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Hierarchic Shell Model Based on p— Convergence
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Abstract

The p—version of the finite element method is a new approach to finite element analysis in which
the partition of the domain is held fixed while the degree p of approximating piecewise polynomials
is increased. In this paper, the focus is on computer implementation of a new hierarchic p—conve-
rgence shell model based on blend mapping functions. Its rigid —body modes, round —off error, and

convergence characteristics are investigated.

1. Introduction

Assurance of the reliability and accuracy of
computed data is fundamentally important in
computer aided analysis and design. In this
paper, the equation of how to ensure the relia-
bility and accuracy of computed data in engi-
neering computations concerned with analyses
of shell structures is addressed. In order to
clearly delineate the objective and scope of this
paper, some definitions are necessary. First, we

must distinguish between convergence process
in finite element analysis. In the conventional
finite element convergence process, which we
shall call h—convergence, the number and type
of the interpolating functions over each element
are fixed and the finite element mesh is refined
in such a way that the maximum diameter of
the elements, h, approaches zero. In the second
convergence process, to which we shall refer
as p—convergence, the number and distribution
of finite elements is fixed and the number of
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Hierarchic Shell Model Based on p— Convergence

basis functions, which are necessarily locally
complete polynomials of order p. is progressively
increased. {1. 2]

This paper is concerned with p—convergent
finite element software systems and the displ-
acement formulation. The development of such
software systems has been made possibly by
three recent developments. [3, 4]

1. Hierarchic families of finite element, based
on the displacement formulation, have been
developed.

2. It has been established that whenever h-—
convergence occurs, p— convergence will also occ-
ur, {and vice versa) and the rate of p— conver-
gence cannot be slower than the rate of h—con-
vergence, when h— convergence is based on uni-
form mesh refinement,

3. Subastantial computational experience has
been accumulated which indicates that uniform
p—convergent finite element approximations are
superior in efficiency to uniform H—convergent
approximations.

As early as in 1969 [5), elements with hiera-

rchic characteristics were used, unconciously,
in modeling rotational shell elements. The idea
of hierarchic finite elements was first suggested
by Zienkiewicz et. al. [6] in order to join F.E.
with different polynomial degrees. A new and
useful family of hierarchic finite elements has
been developed by Peano et. al. [7] Hierarchic
finite elements have the property that shape
functions corresponding to an element of order
p consitute a subset of the shape functions of
all higher order hierarchie elements of same kind.
In other word, when increasing the order of FE,
the previous shape functions of the low order
element shall be retained. Therefore, it 1s similar
to the Ritz method in an element sense. There
are different ways constructing hierarchic seq-

uences of shape functions. However, it is possibe

to construct a set of shape functions to give
a strongly diagonal element stiffness matrix.
(8]

With the hierarchic degrees of freedom app-
earing as perturbations on the original solution
rather than its substitute, one can expect the
hierarchic element to have a more diagonal
dominant form than that obtainable in a direct
approximation involving the identical number
of non—hierarchic degrees of freedom. Furthe-
rmore, a set of shape functions which can cause
an almost diagonal element stiffness matrix can
be obtained by the use of the orthogonality
property of the Legendre’ polynomials. Therefore,
this has important consequences of ensuring an
improved conditioning of the stiffness matrix
and a faster rate of iteration convergence that
would be possible with non —hierarchic forms.
The hierarchic elements make it easy to use
finite elements of different polynomial order.
The continuity between elements with different
polynomial order is achieved by assigning zero
higher order derivatives. Thus along the inter-
element boundary, the higher order of approx-
imation is degraded to the lower. [4, 7] This
hierarchic nature can lead to the numerical
stability and computational efficiency.

In the conventional h—version, there are three

distinct approaches to the finite element repre-

sentation of thin shell structures: (i) in “faceted”
form with flat elements, (i) by means of deg-
enerated three —dimensional solid elements, and
(i) with curved elements formulated on the
basis of curved shell theory. The shortcomings
and associated difficulties 0f “those” elements
are well known.

Corresponding to the six displacement comp-
onents of a cylindrical shell, that is %, v, w 6.
g.. .. there should be six rigid—body modes
which can be detected by zero—eigenvalue test,
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and hence the element stiffness matrix should
have six zero eigenvalues related to these modes.
The strain —displacement relationships are based
on Reissner —Mindlin theory. and hence it may
be noted that the aforementioned elements inc-
lude the effect of transverse shear deformation.

2. Hierarchic Shell Etement

2.1 Integrals of Legendre’ Polynomials

If the computations could be carried out with
unlimited precision, the quality of F.E. approx-
imation would have depended only on the degree
of the polynomial used and not how the poly-
nomial shape functions are constructed. On a
digital computer, however, the computations can
be performed with limited digits of accuracy,
and hence each of numerical stability caused
by round—off error may become a problem.
In order to reduce round —off errors and num-
erical Instability, it is necessary to construct the
shape functions appropriately. Therefore, there
is no unique optimal set of element shape fun-
ctions except from considerations of round —off
and numerical stability.

The shape functions used in this study are
based on the Integrals of the Legendre' polyn-
omials. [9, 10] The Legendre’ polynomials are
defined by the Rodrigues formula:

P (z) . dn(Ql)” 0,1,2
r) = —mmm{z°— n = 0,1,2,. 1)
" 2%nldz™ (

with the orthogonality property :

1 0; ns#m
/ P ()P ()it = {
nem 2/2n+1 ; n = m (2

The internal modes of 1—D elements, the side

modes of 2—D elements and the edge modes
of 3—D elements can be defined as follows

F@:E/’

n p _an_l(t)dt 3
The stiffness matrix resulting from these
orthogonal shape functions for the 1 —D problem
has the condition number 1, ie., the off —diag-
onal terms are all zero and the diagonal terms
are 1 therefore no digits are lost in solution. For
the 2—D case, F(£) and F(7) are multiplied by
the factors (7—1), (€+1), (n+1), (E—1) for
sides 1 through 4 respectively in order to obtain

sequence of hierarchic shape functions.

Table 1. Shape functions for side | of Legendre’

quadrilateral element

P-Level| F{¢n)

3 2
2 —{a+1)(¢"~1)
2s
3| —lren)ee-)
—(n+1)g(e*~
2\/10’7
1 2
4 ——{n+1)(35¢*~4262+7)
8V11 N
1
5 ——(n+1)(636°—90¢3+27¢)
3V/18
1
6

{n+1)(2315-385¢4+16562—11)
7 )

16v22

{n+1)(429¢" ~81967+45565—65¢)

-1

16V 26
8 —(7+1)(64356°~13860¢° 1945024 ~210067+75)
128v30
! 01229 n T oazpnes_ 3
9 (n+1)(12155¢°—29172¢" +235626°—7140¢
128v/34 cass
+595¢)
10 —(n+1)(46189610—1222655+114114¢5—

256V 38

43890¢*+59856°—133)
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Table 2. Internal Modes of Legendre’ Quadrilateral

Efement
polynomial degree F(¢n)
4 Fg(e)Fg(W)
5 F (6)F,(n) F,(€)F,(n)
6 F4(E)F2('7) F3(E)F3('l)
Fy(F (n)
7 Fs(f)Fz(") F.;(E)F:;(”)
FS(E)F4(W) F2(5>F5('7)
3 Fs(6)Fy(n) F(&)F 4{n)
F(&F,(n) F3(&)F;(n)
F(6F ()
9 F'I(E)FQ(’I) FB(E)Fg(”)
F(6)F (n)} F(&)F(n)
F3(£)F6('7) Fz(f)F7(’7)
10 Fo(6)F,(n) Fo(€)F,(n)
FS(E)F4(’7) F5(E)F5('7)
F (6)Fg(n) F3()F,(n)
FQ(E)FQ(W)

Side modes of the rectangular element are given
in Table 1 for polynomial degree 1 through 10.
In order to satisfy the completeness requirement,
internal modes, also called “bubble modes™, giver
in Table 2, must be introduced. The internal
modes can be formed as the product of the Fn
(¢) and F,(») for a Il m and n such that m+n=p,
m.,n>2. The stiffness matrix constructed for the
cylindrical shell problem using Legendre’ polyn-
omials as shape functions will not be exactly
orthogonal as in the case of 1—D problem but it
will remain “nearly orthogonal”, i.e. the diagonal

terms will dominate for reasons stated earlier.

2.2 Blend Mapping

In order to conform better suited to curved

geometries and reduce discretization error, curved
finite elements have been widely used in recent
years. The most well known of such elements
are the parametric (iso— or sub—) family of
elements. For mathematical convenience, in
general, the shape functions are defined on the
standard domains (e.g. triangles, squares, cubes,
etc.) and are mapped into the real domain by
suitable coordinate transformations. The most
commonly used mappings are linear and quad-
ratic parametric mappings which have served
the h—version well. This is because, in general,
the mapping does not introduce large distortions
in the h—version, and all piecewise smooth
boundaries can be approximated by a sufficient
number of piecewise quadratic polynomials.

In the p—version, the size of elements is
usually large and hence the probability of dis-
tortions is more, especially if higher order par-
ametric mapping is used, unless the boundary
of an element is represented by a polynomial
in the parametric form. In the case of non—
polynomial boundaries, like circles and ellipses,
parametric mapping may not work at all. In
the case of proposed element, only the four
corners of a quadrilateral element will be referred
to in mapping from the standard to real domainIt
is therefore necessary to find mapping function
which will exactly map the standard element
to the sides of the real element including the
four corner nodes by making use of the exact
geometric parameters of the curved boundaries
shown in Fig. 1 with the help of transfinite
interpolants. This can be achieved by constru-
cting blend mapping functions. [11] As a special
case, the mapping function for an element
bounded by lines x =const. and g=const. can
be expressed as:

4
X = Z M (&, n)x,

k=1

._62_
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where M.(&m) =31+ EE) (L +nme).

2.3 Element stiffness matrix

The strain energy of the k—th element is
of the form (5

U= [ ((DY1ub)T (E) (D)1 utda,
2 Yak
In the case of cylindrical shell, the strain matrix

is expressed as

0 R % o 0
= 0 o0 o
[D] = 0 0 0 6% 0 6)
0 0 0 0 R%ZE
0 0 0 % ;
0 0 (% 1 0
L 0 _Tl & 0 1 ]

[E] which is the material stiffness matrix. for

an elastic isotropic material, in the absence of

initial stresses and strains, can be expressed as:

rx,, Xk, 0 0 0 0 © 01
K, K, 0 0 0 0 0 O
o 0 kK, 0 0 0 0 ©
0 0 0 D D, O 0 O (7)
El= 1o o o b, b, 0 0 o0
0 0o 0 0 0 D, 0 O
o 0 06 0 0 0 S 0
lo 0o o 0 0 0 0 S ]
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where E
K == K = vK,
J—v
K = Y1=-0K, D, =—L"
P A FIT )
1 —
D, =D, D, =—"p,
2
Er
Sl=m, a = 6/5.

After the shape functions are substituted into
matrix [B], the element stiffness matrix can
be evaluated from eqn (5). A typical submatrix
of [K®) linking nodes 7and j can then be eva-
luated with the expression

(K5] =ff[B, T[D][B,] d4
in which ’ F(bIB, ]
d4d = Rdf dx = R det J d& dn

det J = determinant of the Jacobian matrix.

3. Computer Implementation
3.1 Round —off Error

The susceptibility of a matrix to round —off
errors In the solution of simultaenous equation
is characterized by the condition number(CN).
It can be shown that the maximum number

of digits lost in numerical operations involving
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a given matrix is not greater than LOG(CN).
As a result, the shape functions that perform
better numerically are the ones that will result
In a stiffness matrix that has a smaller condition
number. In general. the stiffness matrix [K] will
be ideally well—conditioned if CN is close to
one and ill —conditioned when CN is significantly
greater than one. In order to calculate the con-
dition number of the stiffness matrix one has
to calculate the largest and smallest eigenvalues
of Eq. (8).

(K}=2AI) {u} =0 (8

The condition number can then be defined as
12 :

_ |Amax| 9
|Amin |

CN
According to Ref. [12], very thin shell may
yield CN=10" because its membrane stiffness
Is much greater than its bending stiffness. If
the diameter —to—thickness ratio of a shell is
1000. the condition number may exceed 10® by
h—version model. On the other hand. in the
case of shell elements developed herein the
variation of the loss of significant digits with
p—level are shown in Fig.2 with radius=4.95
3 in., Poisson‘s ratio=().3125, Young'‘s modulus =

o

V R/t=16.51 (THICK)
O Rr/t=52,69 (THIN)
O R/t=319.96 (VERY THIN)

NO. OF DIGITS LOST
N

)

“ &
P-LEVEL

Fig. 2 Condition Number of cylindrical shell elements :
(R=4.953 in,»=0.3125, E=10.5X10° psi, and central

angle of shell element=90°)

10.5x10° psi, central angle of shell element=9
0°, and R/t ratios of 16.5, 52.69, and 319.96. It
can be seen that the maximum number of digits
lost which can be difined by LOG(CN) lies
between 2 for p=1 to 5,6 or 7 for thick, thin
and very thin shell when p=8. It may be noted
that for p>2, number of digits lost remains
virtually unchanged.

3.2 Rigid — Body Motion

The eigenvalue test can detect zero—energy
modes, lack of invariance, and other defects.
It 15 one of several tests of element quality. If
each eigenvector {us is normalized so. that {u;}
H{u:}=1. Eq. (8) yields

Ae = {u K {u} =20, (10)

Thus each eigenvalue A: of [K] is twice the
element strain energy U: when (normalized)
nodal displacement {u;} are imposed. One can
find A, when the corresponding {u:} represents
rigid —body motions— — — — translation or rot-
ation, singly or in combination. There are three
linearly independent rigid—body modes for a
plane element and six for a shell element. Table

3 shows first nine eigenvalues for a cylindrical

Table 3. Zero Eigenvalues of Cylindrical Shell Element

with P=8
Eigenvalue
i 0.77594E—- 10
As 0.56157TE—09
43 0.36391E—-09
Ay 0.42362E-02
A 0.79867E — 04
‘o 0.18612E 09
As 0.32015E+02
/g 0.35772E+02
Jeg 0.39425E +02
Amac 0.13918E+08
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shell element modelled by a quarter cylinder
with R=4.953 in and t=0.094 in. It is shown
that the first six eigenvalues are small enough
to be treated as zero comparing to the remaining
eigenvalues. Hence the porposed elements satisfy
the rigid —body motion requirements. [12]

4. Numerical Results
4.1 Pinched Cylindrical Shell

Two problems are considered, one a thin shell
with R/t=53, and the other a very thin shell
R/t=320. The first shell
Bogner et al. [13] Recently this problem was
solved by Hansen and Heppler [14] and Carpe-
nter et al. [15] It has a radius of 4.953 in, a
thickness of 0.094 in, and a pinch load of 100
1b. The second shell has the same radius as

was analyzed by

the first but its thickness is taken as 0.01548
in, and its pinch load is 0.1 1b. For both shells,
the Young's modulus is taken as 10.5x10° psi
and Poisson's ratio as 0.3125. Because of the
symmetry only one octant of shell, as shown
in Fig. 3. 1s considered.

In the case of the first shell the radial defl-
ection under the point load based on thin shell
s 0.1084
Woinowsky — Krieger.
based on a [5X5]
found to be 0.1135 in. and with a [10X10] mesh
of $4R elements the value is (.1115 in [16] The
results for this problem published by different

In by Timoshenko and
An ABAQUS
mesh of S8R elements is

equations
solution

authors and present study by the p—version
are shown in Table 4.

The rigid —body modes 1s
evident from the results of Cantin and Clough
[17] with a [3X49] mesh. A deflection of (.11
28 in was obtained by them when the rigid—

importance of

body modes were included and the value was

0.0558 in. when the rigid—body modes were
excluded. The p—version result is 0.1126 in with
a single eigth—order element. Table 5 shows
the deflection(inch) under the pinch load for
the very thin pinched cylinder problem. The
best available analytical result is (0.0244 In by
Ashwell (18] An ABAQUS
solution based on a [5X5]) mesh of S8R elements
is found to be 0.0245 in and with a [10X10]
mesh S4R elements (0.0241 in. The p-—version

and Gallagher.

result with a single eigth—order element(
NDOF =110) is 0.0244 in.

The convergence characteristics of maximum
deflection and total potential energy for a single
element model of the thin cylinder, as the p—
level 1s increased from 4 to 9, are shown in
Figs. 4 and 5. with just one element the results
appear to converge at a p—level of 6. The
effect of mesh refinement, keeping the p-—level
fixed at 5,

The meshes used for this purpose are graded

1s shown in Table 6.

toward the point load, as shown in Fig. 3. With
one element and p=9, the maximum deflection
1s 0.1130 in. Whereas in Table 6 the graded
4 —element model with p=5 gives a value as

0.1134 in. Therefore, a graded mesh with suf-
ficiently high p—level leads to better results
with somewhat fewer degrees of freedom.

To achieve the same degree of accuracy, the
CPU time requirements of p—version solution
with one element was found to be 13.86 sec
as compared to 29.43 sec with ABAQUS based
on [10X10] S4R model and 26.69 sec by [5X
5] S8R element. These runs were made on a
VAX —8800 computer. It 1s expected that more
spectacular savings in CPU time can be achieved
with p—version if more efficient equation solver
and quadrature algorithm are used. It is wort-
hwhile to note that to achieve the same level
of accuracy, a single fifth—order element req-
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uires 13.86 sec of CPU time whereas 49 quad-
ratic elements require 65.77 sec of CPU time
when both runs are made with the p—version
of F.E. program, SHLPV.

Ra=4.953 in, t=0.094(or 0.01548) in
E==10.5x30%, v==0.3125
P==100{or 0.1) Ib{

0.25Y

/‘

g

0.2 |

,(
=
b
—i

iy

{-Eleaent 2-fienents {tlenmts

Fig.3 An octant of pinched cylinder problem
and mesh refinement

e PINCH TEST
.2t
x 5 s 7 s °
i P4
~o.9
&
-
8]
Ye.e O P-VERSION
i
a
3
o3t
90w °.38 9.68 °.5e 1.20 1.50

DEGREE OF FREEDOM X 1072

Fig. 4 Convergence of p—level & NDOF vs. Wmax

Table 4. Deflection(inch) under point load for thin pinched cylinder problem

Ashwell and Thomas and Cantin and
Cantin Sabir Gallagher Bogner et al. Clough
Mesh (1970) (1972) (1975) (1967) Mesh (1968)
1x1 0.104(20) 0.0048(19) 0.0025(48)
1x2 0.0802(72) 1x3 0.0297(48)
I x4 0.1106(50) 0.1107(67) 0.1087(120) IxS$ 0.0769(72)
Ix8 0.1119(131) Ix7 0.0987(96)
2x2 0.0931(54) 0.1103(45) 0.0808(108) 1x9 0.1057(120)
4x4 0.1126(150) 0.1129(125) 2x9 0.1073(180)
6x6 0.1137(294) 0.1135(2453) 3x49 0.1128(1200)
8x8 0.1139(486) 0.1137(403)
10x 10 0.1139(726) 0.1137(603)
5x5 0.1135(390) ABAQUS S8R element
10 x 10 0.1115(540) ABAQUS S4R element
Ix1 0.1126(110) p = 8 by p-version
x 2 0.1134(125) p = 5 by p-version

Figures in parentheses give NDOF.

4.2 Barrel Vault

The barrel vault problem shown in Fig. 6 is
generally treated as a test problem to study the
performance of shell elements. It is loaded by
its own weight in the z—direction. The cylind-
rical shell is supported by diaphragms at the

ends. The diaphragm prevent in the y— and
z —directions but allow displacement in the x —
direction. Poisson’s ratio is zero and modulus
of elasticity is 3.0x10° psi. Because of two
planes of symmetry, it is sufficient to discretiz-
e only one quarter of the shell. The goal of
computation is to compute displacements, mem-
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Table 5. Deflection(inch) under point load for very thin pinched cylinder probiem

Ashwell and Sabir

Thomas and Gallagher

Cantin and Clough Sabir and Lock

Mesh 1972) (1975) (1968) (1972)
Ix1 0.2301(20) 0.00003(19) 0.00001(24) 0.00001(20)
Ix2 0.01582(35)
1 x4 0.02403(50) 0.02327(67) 0.00074(64) 0.00063(50)
1x6 : 0.02440(99)
Ix8 0.02406(90) 0.02467(131) 0.00700(108) 0.00691(90)
2x8 0.02414(135) 0.00699(162) 0.00694(135)
Ix8 0.02418(180) 0.00699(216) 0.00696(180)
8x8§ 0.02431(405) 0.00708(486) 0.00706(405)
5xS§ 0.02453(390) ABAQUS S8R element
10x 10 0.02405(540) ABAQUS S4R clement

Ix] 0.02441(110) p = 8 by p-version

Figures in parentheses give NDOF.

Table 6. Results of mesh refinement with p=5

Number of mesh

elements NDOF P.E. Wiax (in))
[ 34 —0.138E+ 1 0.110131
2 70 —0.139E+1 0.111125
4 125 —0.142E+ 1 0.113417
e PINCH TEST
s s 7 [] 9
P4
2
N
O
@
E~6.9
]
|
=
5o O P-VERSION
w
o
o
2.3
BB’..BG a.30 2.63 0.9¢ 1.22 1.58

DEGREE OF FREEDOM X 1972

Fig. 5 Convergence of NDOF vs. Potential Energy

brane forces and moments at selected points
about one percent relative error.

The history of the solution of this problem
Is rather involved. The first authors to quote
a solution appear to be Cantin and Clogh [17)
who used a program described by Scordelis.

_67_

Many authors quote the program described by
Scordelis and Lo. [19] Although the value the
vertical deflection at the center of a free edge
as 3.696 in, whereas Cowper. Lindberg and
Olson give the value 3.7033 in. [20]

The exact analytical solution based on the
shallow shell formulation is 3.7033 in and for
the deep shell formulation is 3.59 in. ABAQUS’s
S4R element yields 3.629 in when 2166 degrees
of freedom are used. Curiously enough, in a
paper from Washington University in 1988 [2
1], an attempt has been made to solve the
above problem using from 3-D hierarchic ele-
The weight of the shell
was represented as equal tractions on the outer

ments of 8th order.

and inner surfaces. Thus with 1436 degrees of
freedom the maximum deflection is reported
to be 3.613 in. Results are also presented for
four element hierarchic shell model with p=1
2. g=1 and NDOF =1728, leading to a deflection
of 3.616 in. The loading in this work is appro-
ximated by uniformly distributed traction.

But the results obtained by SHLPV using
one eighth order element is 3.6318 in, one ninth
order element is 3.6430 in and one tenth order
element is 3.6664 in when v=(.0. The compa-
rative results with the hierarchic shell model
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-, T T
of Washington University are shown in Table
7. The nodal displacement along BC is plotted
in Fig. 7 in comparison with the results based 9
on Donnel — Jenkins® classical theory. Also the :
bending moments along BC are plotted in Figs. E‘:_'zj
8. 9. %
S-‘.C
2.
E .
1

‘8.0 0.8 1.6 2.4 4.9

3.2
ANGLE FROM ROOF CROWN X 197

Free edge Fig. 7 Normal dispacement w along BC of shell roofs

Digphragm 2.5 : —
*
2.0p — SHLPV (P=B)
Y
E=432000 kips/{t?, »==0.0 -
>£|.s-
. a
gravity load=0.09 kips/ft ~
[
Fig. 6 Simple shell segment under gravity load g
1.0}
Table 7. Computed values of normal displacement(inch)
by hierarchic shell model of Washington University o-8r
& SHLPV
8.2 - . h
Hierarchic Shell Model SHLPV g8 0.6 '8 2.4 3'2.,}—4'0
Washiogton Univ. Vanderbilt Univ. ANGLE FROM ROOF CROWN X 1@
(4-elements) {1-element)
Fig. i
— oor T T - T R T ig. 8 Bending moment My along BC of shell roofs
e 724 3606 5 55 3.5989 -2.9 ' -
6,1 456 3.611 7 80 3.6140
8,1 784 3.613 8 110 3.6318 -1.6p O DONNEL- JENKINS
— SHLPV (P=8)
10,1 1208 3.615 9 145 3.6430
12,1 1728 3.616 10 185 3.6664 Q
:-1.0- 4
&
5. Summary and conclusions %'”‘ 1
The present state of development of a new o.¢f
hierarchic shell elements with high order using
exact blend mapping that satisfies all the reg- .5 55 - 5 =3 R
uirements of constant strains and rigid —body ANGLE FROM ROOF CROWN X 107
modes has been reviewed. In this procedure, Fig. 9 Bending moment Mx along BC of shell roofs

_68_
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the finite element mesh is fixed and the number
or type of basis functions is varied over the
mesh, either uniformly or selectively, until some
desired level of precision is reached. The basis
functions are complete polynomials, which are
hierarchic, 1.e. the set of basis functions assoc-
iated with each higher order element of the
same kind. Consequently, the stiffness matrix
based on the proposed element is well — condit-
ioned even when very high levels of p are used.
There are several computational advantages, the
most important of which are that the rate of
convergence 1s much faster than the rate of
convergence achleved through mesh refinement.
The proposed p—convergence shell model is
therefore a worthy alternative to the existing
cylindrical shell element.
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