Characteristics of Photosynthetic Electron Transport Activity in Isolated Chloroplast of Korean Ginseng and Radish

인삼과 무 엽록체의 광합성 전자전달 활성

  • Published : 1990.06.01

Abstract

In order to characterize the chloroplasts of Korean ginseng as a semi-shade plant and radish as a sun plant, effects of growth light intensity on photosynthetic electron transport (PS) activity in chloroplasts and superoxide (O2.-) production in thylakoid membrane by irradiation were investigated. High-light chloroplasts of both plants showed higher PS activities than those grown under ow growth light intensity. High PS II and low PS I activities in ginseng chloroplasts (ratio of PS II/PS I : 1.1) were observed, but radish chloroplasts showed low PS II and high PS I activities (ratio of PS II/PS I : 0.3). PS II activity of both plants was little affected by temperature in range of 15-35$^{\circ}C$. Activities of whole -chain (PS II+I) in ginseng and PS I in radish were increased at high temperature (4$0^{\circ}C$). Preincubation of chloroplasts at 4$0^{\circ}C$ during 30 min, as a mild heat stress, caused rapid decrease in PS II and PS II+I activities of both plants. However PS I activity was not decreased in ginseng and rather increased in radish. O2.- production (NBT reduction) in Mehler reaction in the thylakoid membrane was inhibited by DCMU in both plants. DMBIB inhibited O2.- production in ginseng, but radish was insensitive to DMBIB. Electron flow system in ginseng thylakoid membrane was more susceptible to damage of photooxidation than that of radish.

Keywords