Abstract
The gradient and depth of tin at the side of glasses by float process were measured. The effects of tin to ion exchanged of glasses in the molten salt of KNO3 and AgNO3 were presented by means of Ag+ ion penetration depth, diffusion coefficient variation, spectral transmittance and color coordinates. The diffusion coefficient of Ag+ ion of tin side was higher than air side, and the activation energy of tin side was 0.2-0.6Kcal/mole lower than air side. Therefore Ag+ ion penetration depth of tin side is 2-10$\mu\textrm{m}$ deeper, hence it can be seen that tin promote Ag+ ion diffusion. The same treatment of ion exchange, reddish-brown oflong wavelength in case of tin present, yellowish-amber of short wavelength in case of tin absence were revealed.