Effect of sequence variations within DNA melting region on the rate of formation of open complexes at $\lambdaP_{R}$ promoter

$\lambdaP_{R}$ 프로모터 열린복합체 형성에 미치는 DNA melting 부위 염기서열의 영향

  • 정현채 (서울대학교 자연과학대학 미생물학과) ;
  • 노정혜 (서울대학교 자연과학대학 미생물학과)
  • Published : 1990.03.01

Abstract

To examine the effects of sequence variations near the transcriptional start site on the rate of formation of the open complexes at bacteriophage $\lambda P_{R}$ promoter, two mutant promoters were created by site-specific mutagenesis using synthetic oligonucleotides. Mutant I coatains changes at positions -3 and -4 from TT to CC, thus having a 6-bp long G/C stretch between -10 region and transciptional start site (+1). Mutant II has changes at positions -5 and -6 from GG to AA, thereby having a 9-bp long A/T stretch between positions -11 and -3. Selective filter binding assays were performed to measure the rate of formation of the open complexes between the wild-type or two mutant $P_{R}$ promoters on 664 bp fragments and E. coli RNA polymerase at two temperatures. At 37.deg.C, the wild-type and two mutants showed similar rates for the formation of open complex. The second order rate constant $k_{a}$ and $\tau _{int}$, as determined from the .tau.-plot analysis, were $(6.0\pm0.4)\times10^{6}M^{-1}sec^{-1}$ and $11\pm5$sec, respectively. At 18.deg.C, however, the wild-type and two mutant promoters showed differences in the kinetic parameters. k for the wild-type promoter was (2.2$\pm$0.1)\times 10^{6}M^{-1}sec^{-1}$ and $\tau _{int}$ was 76$\pm$sec. Mutant I and II exhibited differences mainly in the rate of isomerization ($\tau_{int,I}=91\pm$10 sec, int,II=34$\pm$ sec), whereas the second order rate constant $k_{a}$ was similar to the wild type value. This result implies that at $18^{\circ}C$, the isomerization rate is determined by both protein conformational change and DNA melting, which are separable kinetically according to the 3-step mechanism of Roe et al.(1984,1985), and that the base changes affected mainly the rate of DNA melting as predicted.lting as predicted.

Keywords