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A Fixed Priority Queue Median

with Jockeying on a Network

Kyung-Hee Jung®

Abstract

This paper is concerned with determining a minisum location with jockeying
for a server on a probabilistic network in which each customer type enters the
network system permitting with jockeying through a specified node and a
nonpreemptive service policy is in effect. An algorithm to locate a single Fixed
Priority Queue Median with Jockeying (FF'QMJ) on acyclic networks is developed
by using the Generalized Benders’ Decomposition technique. The results are then

extended to a general network.

1. Introduction

Minisum location problems incorporating queueing aspects were first by Berman, et.
al. (2). They studied the problem in which customers requiring service enter a network only
through the nodes in a Poisson stream and «alled the optimal single server location, the
Stochastic Queue Median {SQM). Each customer joins a nodal queue if the server is busy,
and waiting customers are served using a Firsi-Come-First-Served (FCES) service rule. The
objective is to minimize the mean response time for all customers. In this context, the mean

response time refers to the sum of the travel :ime and the mean waiting time in the queue.
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They develop an algorithm for the SQM on a gi:neral network. Chiu, et. al. (3] consider the
SQM on a tree network and develop two specialized algorithms by utilizing the properties
of convexity,

Chiu and Larson (4] consider an optimal location of p-servers on a general network with
zero queue capacity, that is referred to a p-server-facility-loss-median (p-SFLM). They prove
that p-SFLM corresponds to Hakimi's median if the costs of lost demands are nonnegative,

On a network congested with a queueing system, the servers must return to their base
location. Otherwise, the service times for service requests are not independent and available
results in queueing theory for an M/G/c system is no longer applicable. The First-Come-
First-Served (FCFS) queue discipline is assumed in each case.

More recently, Jung, et.al. [11) developed algorithms for determining a Fixed Priority
Queue Median (FPQM) on chain and tree graphs A F PQM is a minisum location for a server
on a probabilistic network in which each prio-ity class of customers enters the network
through a specified node and a nonpreemptive service policy is in effect.

In this paper, we consider the problem in which customers requiring service enter the
system through priority nodes and are allowed to jockey with some penalties to higher priority
nodes. The objective is to find the location of a single server and the switched customer
rates which minimize the mean weighted waiting t.me in the queue, assuming that the network
system permits the customer’s jockeying behav or.

This paper is organized as follows. We begin with a detailed problem description and
then discuss the structure of the objective function over a path by utilizing the properties
of convexity, An algorithm to locate a single Lixed Priority Queue Median with Jockeying
for queue position on a chain graph is developed by using the Generalized Benders’ Decom-

position. These results are then extended to tree graphs and general networks.

2. Problem Description

Consider a finite, connected and undirected stochastic network G(N,L) where N (IN]=n)
and L denote the sets of nodes and links, respectively. The arrival pattern of demands
through the nodes and the service scheme are probabilistic. Then lengths of links are

nonnegative and there are no multiple links betwoeen any two nodes on G. Then the shortest
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path distance, d(x,v), is well-defined between two points x,y on G.

Assume that the priority of each node is precetermined and remains constant in time,
the higher the nodal number, the higher the priority. Type i customers requiring service enter
the network system only through node i. Whenever a customer arrives for service and finds
that a traveling server is not available, then it is possible for customers to react in various
ways. A customer may decide to wait no matter how long the queue becomes. If the queue
is too long, the customer may leave the network system without waiting. On the other hand,
an impatient customer may react in some other weys after joining the queue. For example,
balking, reneging, jockeying, or bribing or cheatiag for queue position. In this paper, we
will assume the input process allows “jockeying for queue position” in which the objective
is to minimize the mean weighted waiting time in the queue for all customers. Non-preemptive
service policy independent of a customer’s priority is in effect. Each nodal queue capacity
is infinite, and as soon as a server is free, he chnoses the highest priority node among the
existing nodal queues and serves the nodal customer. Within a priority group, a First-Come-
First-Served (FCFS) queue discipline is observed. Otherwise, a server stays at his home
location on G.

In practice, however, it seems reasonable thit customers jockeying for queue position
are penalized in proportion to the traveling time of a jockeying customer to the switched
node. We assume here that after switching to node i from node j, he has the mean nodal
service time of node i. Such a customer will be called a pseudo-customer of node 1 in this
paper.

Because of the penalty and the new mean rodal service time, switching to a higher
priority node does not necessarily reduce the mean weighted waiting time in the queue.
Therefore, the main concerns are what proportion of the arrival rates at nodes should be
switched and where the server's home should be located to optimize the problem, assuming
that the network system permits the customer’s jockeying behavior,

Service requests through nodes are generated independently in homogeneous (stationary)
Poisson streams, each with mean rate A, and tne nodal service times vary with priority
groups. The service time has two compnents - i nodal service time and a traveling time

on links. These times are independent, and indentically distributed with a general distribution.
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The independence of service times restricts a server to make a round-trip between a home
location and each node on G requiring service. Otherwise, the service times for the different
group customers will depend on the previous customer types. In this case, available results
in queueing theory for an M/G/c system are no longer applicable. Therefore, it is assumed
that whenever available, a server travels to the demanding node with the highest priority,
serves a customer with the appropriate given nodal service time, then returns to his home
location on a network. If there is still any otner node having a queue at any node, he starts
to serve. If not, he remains at his home location until the network system becomes busy.

If we represent the actual service time of each customer type, it is the sum of twice
the travel time to each node demanding service and its nodal service time. Denote the mean

service time of type i customers by E(S, (x1) where a server is located at x on G. Then

ES (x) = 2tG,x) + E(Y),
ti,x) = d( x) /v,

where E(Y,) is the average nodal service time at node i,
d (i, x) is the shortest path distance between node i and a
server's home location, x,
v is the traveling velocity of a server over a path, and
t{i, x} is the shortest traveling time between node i and x.
As defined earlier, node n has the highest priority and node 1 the lowest on G(N,L).
By allowing jockeying for priority custoriers on the network system, the new average

arrival rates at node i(i=1, -, n), A/, are:

Av’ - /1: - )_E: Vi + '{]l?’n (1)

k=i+1l

where 7, is the rate of pseudo-customers trom node i to j.

Now the objective of this paper is to fird an optimal location of a single server on G
and optimal pseudo-customer rates which minimizes the weighted sum of the mean waiting
time in the queue of each priority class. This model is basically a minisum location (median)
problem congested with a fixed priority que:ecing system with jockeving, This study seeks
an optimal server location stated as above which is called a Fixed Priority Queue Median

with Jockeying (FPQM]).
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3. A Single on a Probabilistic Network Incorporating an M/G/1

Priority Queue

The mean waiting times in the queue of each priority class, W, for an M/G/1
nonpreemptive, fixed priority queueing system with an infinite queue capacity, are found by
Cobham(5) :

TAE (S /2
W.= if Zi‘u,E(S,) 1
(1-EAE(S)) (1-E AE(S)

J=itl

o otherwise

where A, is the constant mean arrival rate ol type i customers,
E(S.) is the mean service time for type i customers, and
E(S? is the second moment of service time for type i customers,

When the network system is operating on an M/G/1 fixed priority queue discipline, the
mean waiting time in the queue of each customer group desiring service can also be
formulated in terms of a server location, x, on G and a new arrival rate, A/ (7) by utilizing
Cobham’s solution with constant service time and arrival rate for each class.

Therefore, the mean waiting time in the (ueue of the i'" priority class, W, (7’,x), at

a server location, x/e/G, is:

A (NES () /2

W (%)= |——— — +thx if ZAMES ) (1
(124 MES, ) (1-Z A DES, () @
0 otherwise
where
B(S.(9) =246, ) +E(Y) =2d ) +15 (1), 3)
E(S? (x))=% a* G, x)+éE(Y;)d(i, x) +E (Y9, , 4)

E(Y:) : the mean nodal service time of customer type i,
E(Y?) : the second of the nodal service time of customer type i,

E(S;(x)) : the mean service time for type i customers at a server location, X,
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E(S*(x)) : the second moment of ser.ice time for type 1 customers at x.

It is assumed that each E(Y,) and E(Y?) are known for i=1,2, -, n, and v is a constant
on G.

In the finite case of (2), the first term in the right side is the mean waiting time of type
i customers caused by customers of higher priority or the same priority that entered earlier.
To get the actual waiting time, the traveling tine of the server, t(i, x), should be added
to the first term of (2).

Notice that the value of the first term in (2} ecreases with increasing priority. However,
this is not necessarily true if the second term, t(i, x), is added. Therefore, W, (?, x) and
E(S (x)) for each priority type i vary with a scrver location, x/e/G, for a constant 5’

Our objective is to minimize the mean waitins; time in the queue for all nodal demands,
regardless of their priority types. That is, the model is considered from the viewpoint of

the server. Then the average wait in the queur over all customers is :

~

. AT N
2 ——W. (7,x),
i=t A’ (7)

where W, (5’. x) is the mean waiting time in quiue of customer type i,
A" (7) is the sum of the mean arrival rate: of type i customer, A/ (7). for i=1, 2, n,

Le A (5’) :gn]/\,’ (5’), and x is a server's home location on G.

Other than fixed nodal priorities, relative nocal weights due to service times depending
on a server's home place are considerable. This is reflected in the measures by which the
mean waiting times are evaluated. We shall assume that values, E(S. (x)), describe relative
importance for priority group i for i=1,2, -, n, that is, these represent normalizing factors
in the performance measure,

Therefore, the mean weighted time in the ¢ueue is given by :

\ A -
JES (x)) —— W, (7, x), for xeG.
T A

Since the sum of all arrival rates, A’ (5’) =3A/ (; ), Is a constani, the above is equivalent

to :
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SA(NE(S. (x)W, (7, %) for xeG.

In this paper, we assume that customers jockeying for queue position are penalized by
the traveling time of a pseudo-customer to the switched node, Then the total waiting time
of a pseudo-customer is the sum of the waiting time at his new nodal queue and the traveling
time to the switched node from his previous node. That is, the mean waiting time of jockeyed

customers at node i, W/ (3’, x), is:

- - oo |
W, (7 x) =27 AW, 7, x) +— dik i)}
b=l V

where v’ Is the traveling velocity of pseudo-cusiomers on a network.
Note that traveling velocities of pseudo-custoriers are equal, regardless of their priority
types and pseudo customers at node i are from lower priority types, types 1 through i-1.

Then, a mathematical statement of the problem is as follows :

min AWJ (7, %) {5)

X\E(f(N L)

subject to 7, > 0

A7) >0 for i, j=1,2 - n
where AWJ(7,x) denotes :
AW (7, %) =N DE(S, X)W, (7, %) +— FES () (Z7.d kD).

Constraints in (5) result from the restrictions that the rates of flow-in and flow-out are
nonnegative, and the new nodal rates after swiiching should be also nonnegative.

Substituting W, (7.%) of Eq. (2) into Equatior (5), then AWJ(;’, x) becomes :
N (EA (DESI (X))} {ZA (DES, %))
AWJ(?’, X) —_ i1 _ — [ -

2{1—§k,' NEGS. (x))}

0 ~ 1 n -1
+ lZ/\,' MES. (x)di, x) + —- YES x)Z7.dk,i).
ATAEES A% =1 k=1

Note that A/ (?)E(S, (x)) is the utilization factor (or traffic intensity) of the i'" priority class
at a server location x. This is the ratio of the riéte at which customer enters the queueing
system to the maximum rate at which the system can serve this customer, In particular,

we would rather not locate a server for which tte sum of the utilization factors is greater
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than or equal to one, whereby the mean waiting time of any customer type is infinite.
Therefore, the objective value is apparently infinite.

We will now consider only the finite case of each mean waiting time in the queue whose
condition is FZ"I/\,’ (?)E(S, (x)) <1 for type i customers.

Hakimi(8, 9) has shown the nodal optimality of minisum locations for both single facility
and multi-facility on a general network. However, the nonlinearity of AW]J (7, x) on x€G does
not limit the possible server location (s) to the nodes of G only. A server might be located
anywhere, even at a point on a link of G. Therefore, existing algorithms for the minisum
location model are not applicable here.

In the following section, we consider a single FPQMJ on a chain graph. Then in Sections

5 and 6, we extend the model to tree and general networks, respectively.

4, A Single FPQMJ on a Chain Graph

Consider a chain graph C with n distinct nodes designated 1,2, ---,n. We will assume
that the chain graph is laid out as an interval on the real line and I, is the distance of node
l; from node 1. Note that !,=0.

As far as 7,, are known for i, j=1,2,---,n, then the objective in (5) is only to find a
server’'s location minimizing the mean weighted waiting time in the queue. AWJ (0, x). In the
following sections, AW (x) will denote the objective function with constant Jockeyed rates.

Then this problem can be formulated as :

(BAE(ST (X)) (EAE(S () ) @

2{1- ZAE(S: (9))

+ L SAEG 0)dh .
v o=l

The following theorem follows directly from the properties of convex functions and for

brevity is presented without proof.
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Theorem 1:Let AW : C—E, be the mean weigited waiting time as defined in (6). Suppose
that AW (x) is finite and twice differential on a chain C except at the two end nodes. Then
AW (x) is convex on C, and furthermore, AW (x) is strictly convex if A:’ZHIA, is positive.

Since the FPQM]J model is a nonconvex program with two sets of variables, few
procedures are available for its solution., By using the result of Theorem 1, the Generalized
Benders’ Decomposition (GBD) technique by Gecffrion(6) decomposes the problem of (5) into
an iteration between two subproblems : a nonlinear program with a vector of nonnegative
continuous variables, 7., and a convex prograri with a server's location, x. Here, we utilize
the concept of a complicating variable originally defined by J. F. Benders(1}. Benders
created an approach for exploiting the structure of mathematical program problems with
complicating variables which are temporarily fixed. In this case the problem reduces an or-
dinary linear program by fixing the values of the complicating variables, and Geoffrion
generalized Benders' limit to a nonlinearity. With a fixed value of pseudo-customer rates,
7~, the convex subproblem can be formulated as (6).

The convexity of AW (x) at xéC guarantees the existence of a local minimum, x* which
is also a global minimum. Although any standard line search procedure could be used to
find x* we will describe an efficient procedure for first localizing and then determining x*.
This solution procedure will then be extended to tree graphs. Toward this end, let us rewrite

AW (x} as follows :
= 1 . ’ 2 l . ’ 7o 2 2
AW (x) —?(Z} E¥))g x) + 7(1+L§)&l EYi))g. (x) + - g (x) + e g.(x)

where g, (x) are defined :

SAEY) + 2FArd (L x)

g (0 =—= . .
1-ZAE(Y:) -—XA/dG, %)
=1 yi=l
SAE(Y)d(, %)
g.(x) = - — 9 . )
1-ENE(Y) - =EA/d (i, )
=1 VI:I
(EA7d (i, ) (SAE(Y)d G, %))
£ () =—- - :

1-ZANE(Y) - 23, %)
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A, %)

gi(x) =—— 92
I-ZMNER) -=23A/d G, x)
=1 Vr’l

It can be readily verified that the funciions z, (x), i=1,2, 3,4, are convex on C. To in-

itiate the localization procedure, we present twc basic results shown in Jung, et. al (11].

Theorem 2 ! let u, v : S—E, be convex functions over a convex set SCE.. Suppose that ;(,ies
minimize u( -} and v(-), respectively. Then the optimal solution x* that minimizes the
function (u+v) (-) is located on the interval :oining X and X,
Theorem 3 :let u,v:S—E, be nonnegative functions where SCE,. Suppose that ;( XS
minimize u(-) and v(-), respectively, If x* minimizes the product of two functions,
u-vi-), then x* is located on the interval joi 1ing ;< and x.

The localization process will consist of applying the above theorems to the optimal

solutions to the following subproblems :

(P1) minXA, d {, x)

x¢C i=1

(P2) minXA E(Y.)d( x), and

x€C i=1

(P3) minZA: d* i, x).

X€C i=1

Note that solutions of subproblems (P1) and (P2) can be easily found by Goldman's (7
algorithm since these two subproblems are simply minisum location problems on a
chain {tree). Also the solution of (P3) could be found using the necessary and sufficient
conditions provided by Shier and Dearing (12 for nonlinear single-facility median type

probems. However, we will now develop an efiicient procedure for a chain graph.

AL

P

Theorem 4 : x¥= solves subproblem (P3).

Note that x¥ is simply the ratio of the weighted sum of all distances from node 1 and
the sum of all nodal weights (i.e. arrival rates). Thus the solutions of subproblems
(PD), (P2), and (P3), x¥ x¥ and x¥* respectively, can be obtained quite easily via either

Goldman’s algorithm or Theorem 4.
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Recall that AW (x) and g. (x), i=1, -, 4 are convex, Therefore, by Theorem 2, a min-
imum of AW (x) lies on the interval defined by th¢ minimal points of g (x), i=1, -, 4 Thus,
minimizing g, (x), i=1, -, 4 would localize the iritial interval of uncertainty on C, Firstly,
the minimization of g, (x) is equivalent to solvin; subproblem (P1). Next, the minimum of
g, (x) is located at a point between x¥, and x¥ by Theorem 3, as is the minimum of g, (x).
Similarly, the minimum of g,(x) is located betwee: x¥, x¥. And since AW (x} is a nonnegative
combination of g, (x), i=1, -, 4, the solution, >*, which minimizes AW (x) will also lie in
the interval defined by the solutions to subprotlems (P1), (P2), and (P3).

Now that an initial interval of uncertainty has been established, any standard line search
procedure can be utilized to obtain x*. However, as an expedient, it can be seen that if
at the k'™ iteration, the interval of uncertainty, ([u, b.J, is a subset of a single link (j, j+1],

then AW (x) can be rewritten as follows and x can be found directly from (7).

Sx*+Tx+R
AW (x) = —— ,
1-c,—¢,x

where the constants are

) A
g = C4Cy 22 ‘
A% v
= S SAE(yy ¢ Sy QGtec ) 2
2 i=1 v v Vz
R="S sap(y + Sldre) 2o
2 v v?
n 2 J a
Cl - ZALE(Y!)—_(ZA lr _Z AIll),
i=1 v i=1 1=j+1
2 .
CZ——_( 1AI“ZA!),
v =1 t=j+1

¢ = SAE(Y)- £ AE(Y),

1=+l

co= X AE(Y) L -SAE(Y) L,

[N EN}

Cs = —2 an, l;, and,
¢ = ZA L.

The optimal solution is then given by
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S(1-c)) +4/S*(1-¢c,)"+Sc, [T{1-c,) +1ic,) (7)

xX* = —

Sc,

A formal statement of the algorithm follows.

1-FPQM Chain Algorithm

Step 0] If a chain C has only a single node. stop.

Step 1) For the previous three subproblems, find optimal x¥, i=1,2,3. Then reindex these
as x%, <x%, <x*,.
If VAW (x*%;) =0, then stop and x*, is the optimum. Otherwise, let a,=x%,, b,=x%,
if VAW () 205 let a,=x%,, b,=x% if VAW (x*,) <0.

Step 2) If VAW (a,) =0 or VAW (b,) =0, then stop. Otherwise, let k=1 and go to Step 3.

Step 3) If a,, b, € a link (p,q), find x* fromw (7). If x* ¢ (a,, b.), then stop. Otherwise,
choose x* such that AW (x*) =min{AW (a,), AW(b,)}. If a,, b. ¢ a link (p, q), then
go to step 4.

Step 4) Find the midpoint 5= (a.+b.) /2 and determine VAW (B). If VAW (8)=0, then stop
with x*=3,. Else, go to Step 5 if VAW (5.)>0; go to Step 6 if AW (5)<0.

Step 5] Let a..,=a. and b,.,. =5, replace k by k+1, and repeat Step 3.

Step 6) Let a...=4. and b,.,,=b,, replace k by k+1, and repeat Step 3.

This localization and solution procedure proved to be computationally several times faster
than bisection alone.

Supposing that an optimal server location of AW (x) in the GBD subproblem, )A(* is
known, the objective becomes to find the optimal rates, 5’* which minimize the mean
weighted waiting time in the queue, AW]J 6’, )A(*). By using vector notation, the GBD master
program with jockeying at a server location ¥ is given by :

Y AB'Y N

Min AW] (7, x*) = .+ Cy @)
2(1-BY)

subject to ¥> 0
D: ¥>0 for i=1,2, . n

where the vectors A, B,C, and D are well-defined.
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An advantage of the GBD technique is that the GBD subproblem and the master program
may be solved by any appropriate algorithm, There are many algorithms to solve the con-
tinuous nonlinear master problem in (8), containing extremely many variables, Gradient
methods, implemented with Newton's method and sparse matrix techniques are useful.

In the convex subproblem we assume that the pseudo-customer rates are known. Their
values are provided by an initial guess at the fisst iteration and by the solution to the master
problem at subsequent iterations. However, we suggest to choose the zerc jockeyed rates
as a starting value which satisfies the nonneyativity. Then the iteration procedure to find

a FPQMJ is summarized in the following.

1-FPQM]J Chain Algorithm

Step 0) Select an initial value of pseudo-customer rates, that is, 7.,=0.

Step 1) Solve the GBD subproblem of (6) obtaining ;(* by using the 1-FPQM Chain Algo-
rithm,

Step 2] With a constant value, %* set up and solve the master program (8) with a set of
variables, 5’ by using the appropriate nonlinear programming method.

Step 3) Find a new arrival rate at each node A/, by using Eq. (1), and then repeat Step
1 until no improvement in the objeclive value is obtained. The optimal objective
value is AWJ (*, x*) where, 7* is the set of optimal pseudo-rates and x* is the op-

timal server location.

5. A Single FPQMJ on a Tree Graph

In the previous section, we developed a solution procedure by using the GBD algorithm
for a single FPQMJ on a chain graph. We now extend these results to a tree graph, T(N,L).
As previously mentioned, the GBD algorithin is based on an iterative interaction of master
and subproblems. The problem in (5) is decomposed into two parts : the determination of
pseudo-customer rates (master problem), and tae determination of an optimal server location
on a tree (subproblem). The only difference witn Section 4 is the domain of subproblem which

is extended to a tree graph. Since the 1-FPQM/ tree algorithm will be the same as the chain
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case developed in the previous section, in this section we will only show how to find an
optimal server location x* on a tree, which is the GBD subproblem.

Again, consider subproblems (P1), (P2), and (P3) where the underlying graph is now
a tree T(N,L) :

(P1) min Z\A d(, x),

x€T  i=i

(P2) min XA E(Y.)d(, x), and

xe T i=1

(P3) min }2"/\/ d* (i, x).

xXCT =1

Subproblems (P1) and (P2) are again readily solvable by Goldman's algorithm. The
results of Shier and Dearing [(12] are useful in solving subproblem (P3) and the following

theorem follows directly from their results for general networks.

Theorem 5 : Let t denote ay node of T(N,L) and let T.(N,,L.) be a subtree of T obtained
by disconnecting T at t. Treat t as an end node of T.. x¥ lies on T, if and only if (A, d(,t))
f €Nk
/XA dG,t)
1§ Ni

Now, utilizing Theorem 5 and a Goldman-iike procedure, one can easily isolate the
location of x¥ to a chain on even a single link. The optimal location, x¥, then follows from
Theorem 4. For example, in the case of a single link (p, q), x¥ is located at a distance (ZA; d

1EN
(i, p})/X A from node p.
iEN
Now consider the problem min AW (x). Recull from Section 3 that AW (x) is convex on
x£T
a chain graph and since there is a unique cham between any two points on a tree T, it

follows that AW (x) is also convex on a tree T. The following theorem is useful in localizing

x¥ to a chain graph which is a subset of T.

Theorem 6 : Let x¥, i=1,2,3 be the optimal locations on T corresponding to subproblems
(P1), (P2), and (P3). If one of the x* lies on a chain C connecting the remaining two,
then x* also lies on C. Otherwise, let node k be the node at the intersection of the chains
joining the x¥ 1=1,2,3. Then there exists exacth one improving direction of AW (x) at node
k. Say that this improving direction is toward »¥. Then x* lies on the chain joining node
k and x,*

Finally, we present an algorithm for determining x* that solves min AW (x). This algo-

xeT
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rithm utilizes the localization properties of Theorem 6 and the solutions of subproblems

(P1), (P2), and (P3) which can all be solved «uickly by Goldman-type algorithms.

1-FROM Tree Algorithm

Step 1) Solve subproblems (P1), (P2), and (P3) to find x¥*, i=1,2,3.

Step 2) If x¥, i=1,2, 3 lie on a unique chain, then find x* by utilizing the Chain Algorithm.
Otherwise, compute the directional derivatives of AW (x) at the intersection node
k in the directions toward x¥, i=1,2,3.

Step 3) Let the improving direction be in the direction toward x¥. Use the Chain Algorithm

to find x* on the chain from node k to x*,

6. A Single FPQMJ on a General Network

While there exists a unique shortest path between any two points on a tree and the
distance function d(x,y) is convex on a tree, these properties do not necessarily hold on
a general network, To attempt to overcome thic difficulty, one tries to find some interval
on a general network in which the objective function is convex. One can then find a local
optimum relative to this interval.

Regions of convexity on a graph are found by determining the set of breakpoints, or
points of path indifference on each link. (See Berman, et. al. (2)). For a network with n
nodes, there are at most (n-2) breakpoints on eich link. For a point x on the interval be-
tween two adjacent breakpoints, the shortest path between x and each node is consistent,
and thus AW (x) is convex on this interval.

Therefore, to determine a global minimum of AW (x) on a general network G, one could
determine all the local minimums which exist beiween adjacent breakpoints and choose the
best of these. Obviously, this can be a tedious process for a large network. However,
Hooker(10) has recently improved this procedure by developing a lower bound technique and
a path elimination technique which are both applicable to a single FPQMJ on a general net-
work,

By utilizing the Hooker's improvement, we can also solve the GBD subproblem which

obtains an optimal server location on a general network. The GBD solution procedure of
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(5} on a general network is similar to the acyc:ic case and is therefore omitted the statement

of a search procedure.

7. Conclusions

In this paper, algorithms for finding a Fixed Priority Queue Median with
Jockeying (FPQMJ) on a chain and tree were developed. A FPQMJ is a minisum location
on a probabilistic network in which each customer type enters the network system permitting

Jockeying through a specified node and nonpreemptive service policy is in effect.
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