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Optimal Reporting Strategy of an Insured

— Dynamic Programming Approach —

Jae Hyung Min*

Abstract

We consider an insured who wishes to determine his optimal reporting strategy
over a given planning horizon, when he has the option of reporting or not reporting
his at-fault accidents. Assuming that the premium in future period is continually
adjusted by the insured’s loss experience, the insured would not report every loss
incurred. Rather, considering the benefits and costs of each decision, the insured
may want to seek a way of optimizing his interests over the planning horizon. The
situation is modeled as a dynamic programming problem. We consider an insured’s
discounted expected cost minimization problem, where the premium increase in fu-
ture period is affected by the size of the current claim. More specifically, we
examine two cases : (1) the premium increase in the next period is a linear function
{a constant fraction) of the current claim size; {2) the premium increase in the
next period is a concave function of the current claim size. In each case, we derive

the insured's optimal reporting strategy.
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1. Introduction

In real life, people, as insureds, sometimes do not report their fault related accidents
or losses (accidents or losses caused by the insured’s fault) to the insurance company.
This behavior happens because they want to maintain good “credentials” and hence pre-
vent a possible increase in their premiums during a later period. One example of this
case is automobile insurance, in which the individual insured’s premium is based on his
past driving record. In this paper, we attempt to answer the following question : what
is the optimal reporting strategy when an insured has the choice of reporting or not
reporting his at-fault accidents to the insurance company so as to maintain a good
‘record” and prevent an increase in future premiums because of his loss experience?"
This particular problem reflects the common hesitancy of an insured person to report
a small loss, and relaxes the assumption that an individual always report his loss to the
insurer in order to restore his wealth position.

Suppose you, as an insured, cause an accident during a period. Facing a financial
loss from the accident that could be covered b the insurance, you may take one of two
possible actions. The first action is that you report the loss to the insurance company
for reimbursement. The second is simply that vou do not claim your loss. By taking the
second action, your wealth position is reduced by the amount of the loss incurred since
you pay the loss yourself. Obviously, if you decide to report your loss, then you do not
have to worry about the loss incurred since the -ompany will pay it to restore your wealth
position, assuming that the loss is fully insured, However, you may be concerned about
a possible premium increase in a future period. On the other hand, if vou decide not
to report, you will experience a financial loss: “ut in this case, you do not have to worry
about your premium being increased because of your claim. Considering the benefits and
costs of each decision, vou may want to seel a way of optimizing vour interests.

Reflecfting this human behavior, the goal of this paper is to identify the insured’s
optimal reporting strategy each period which minimizes his discounted expected costs dur-

ing a given planning horizon. * To achieve this goal, we present two dynamic programming
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models. In these models, it is assumed that the amount of the increase in future premium
depends on the severity of the loss which is claimed by the insured during a current
period. That is, the insurer adjusts the premium each period to reflect the insured’s cur-
rent clai'm size, where the size of claim is random. The state variables of each model
are the current premium and current size of loss. More specifically, in the first model,
the amount of premium increase in the next period is assumed to be a linear function
{(a constant fraction) of the size of the current loss which is reported, and in the second
one, it is assumed to be a concave function of the current loss size which is reported.
From each of these two models, conditions are derived to determine the insured’s optimal

reporting strategy each period.

2. Dynamic Programming Model where Premium Increase is
a Linear Function of the Claim Size

In this section and the next section, we examine an insured’'s optimal reporting strat-
egy which minimizes his discounted expected costs during a given planning horizon. To
do this, we now assume that the amount of premium increase depends solely on the
amount of the current loss which is reported. Also, we assume that a deductible is
zero (i. e., we consider a full-cover policy). Assume that the loss amounts are i.1.d. ran-
dom variables X,, X,, - from some distribution F. The premium can change (increase)
only when a loss occurs and it is reported. Suppose r and x denote the current premium
and current loss, repectively. If the insured reports x to the insurance company in order
to restore his wealth position during a current period, then the premium at the beginning
of the next period will be r+kx where 0 {k {1. That is, the premium increse is a fraction
of the current loss which is reported.

Let V.(r, x) be the insured's minimum discounted expected costs when the current
premium and the current loss are r and x, respectively, and n periods remain. If we
assume that the costs incurred from the next period are discounted by factor 4 {0<B<1),
then the dynamic programming recursion for V., considering the insured’s two

decisions @ “not report” or ‘report”, will be
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r+x+8EV,, (r, X) (not report)
V. (r, x) =min
r+8EV.., (r+kx, X) {(report)
=r+min(x+8EV. . (r, X), AEV..,(r-kx, X)) (1)

where E denotes expectation operator and random variable X is the size of the next loss.
That is, if the insured has loss x, but he decides not to report it, then his costs incurred
during a current period are premium r plus current loss x. From such a decision, the
premium in the next period will not increase. On the other hand, if the insured decides
to report the loss incurred, then his current cost is just the current premium r since the
company will reimburse his current loss x. However, his premium in the next period will
increase by a fraction of the current loss, written kx. Considering benefits and costs
of each decision, the insured wishes to identify the optimal reporting strategy each period
in order to minimize the sum of the current costs and the discounted expected costs in
future periods.

Before identifying the insured's optimal reporting strategy for the above general
n-period model, we first look at the insured’s reporting behavior for two, three, and four
period models,

Using (1), and assuming V,=0, we have, when n=1,
Vi(r, x) =r+min(x, 0} =r
which says that the optimal decision for n=1 is “report”, and

Vilr,x: =r
When n=2,
V, (r, x) =r+min(x+5EV, (r, X}, BEV, (r+kx, X))
=r+min(x+5E (r), 5E (r +kx) )
=r+min(x+ fr, Ar+ fkx)

=r+ 8r+min (x, skx)

Since the insured’s discounted expected costs from both decisions are linear in x with
the same intercept term (r+45r), we just need to compare the slope of x for each decision.

However, since gk is clearly less than 1, the optimal decision for n=2 is “report”, and
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V, (r, x) =Sk +r+4r

Now, when n=3, we have

Vi (r, x) =r+min(x+8EV,(r, X), SEV, (r+kx, X) !
=r+min(x+ 8B (5kX+r+4r), SE (BkX+ +kx) +4(r+kx))]
=r+min(x+ AKEX + sr + g%, 52 kEX + 8r + gkx + 5°r + 8°kx)
=r+ar+ 5 r+ FkEX + min (x,(8k + 8°k) x

From this equation for V,(r, x), we see that the optimal reporting strategy depends on
the slope of x for each decision. That is,

if 1) sk+ 4%, then the optimal decision for 1=3 is “report”, and
Vi(r,x) = (Bk+ 8 k)x +r+pr+4r+C,y
Otherwise, the optimal decision for n=3 is “not report’, and
Volr, x) =x+r+5r+5r+C,

where C,=p5°kEX does not depend on r or x.
Now, to calculate V,(r,x), we consider 2 cases.

(i) Suppose V. (r,x) = (Bk+8k)x+r+4r+41+C,(G. e., sSk+5k {1). Then,

V,(r,x) =r+min(x+8EV,(r, X), SBEV, (r+kx, X))
=r+min{x+8E ((8k+ 5°k) X +r+sr+ 5 r+C,),
BE ((8k+ 8°K) X+ (r+kx) + A (r +kx) + 5 (r +kx) +C,) )
=r+min (x+ 8°kEX+ SPkEX + 3r+ 8t + 5’1+ 5C;,
B*REX+ S*KEX + Br+ kx + 5'r + g°kx + 5°r + 5°kx + 5C,)
=r+8r+5r+ £°r+ SKEX+ A KEX + 8C; - min (%, (8k+ 8°k+ °k) x]

(ii) Suppose V,(r,x)=x+r+8r+45r+Cy(i.e., 8k+45k > 1). Then,

Volr, x) =r+min{x+gEV;(r, X), SEV, (r t+kx, X))
=r+min(x+ AE (X+r+8r+5r+Cy),
BE (X+ (r+kx) +8(r+kx) + 4 'r+kx) +C,)
=r+min{x+AEX+ 8r+ A r+5°r+ 5C,,
BEX+ Ar+ skx+ A°r+ f2kx + 8'r + S°kx + 5C,)
=r+8r+8r+ Fr+ BEX + 5C, +min (x, (s4k+ 5k + 5°k) x)
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Hence, from (i) and (ii), we see that the optimal reporting strategy again depends on
the slope of x for each decision. That is,

if 1) pk+s°k+ 45k, then the optimal decision for n=4 is “report”, and
Vi(r, x) = (8k+ 8°k + 8°k) x+r+ Ar+ gr + 8°r + C,
Otherwise, the optimal decision for n=4 is “not report”, and
Volr, x) =x+r+8r+8r+ 5°r+C,

where C, denotes a constant which does not depend on r or x, when 4 periods remain.

By this fashion, we conjecture that
Vo(r, x) =min(x,(Bk+ Ak + 8k + -+ 8" 'k)x] +r + Sr+ e+ 5t + -+ 51+ C,

where C, is a constant which does not depend on r or x, when n periods remain. If V., (r, x)
has the form we conjecture, then the optimal reporting strategy for the n-period model
depends on the magnitude of gk+4’k+45°k+ -+ 4" 'k. The conjecture is formalized by

the following proposition.

PROPOSITION 1 : Suppose the premium increase in the next period depends solely on
the amount of current loss x which is reported, and the amount of increase is a fraction
of loss x, written kx(0 (k {1). Then, for a given planning horizon, say n(>2)periods,

V. (r, x) has the following form
Vi(r, x) =min(x, (8k+8k+8k+-+8"k)x)+r+Ar+5r+8r+-+5 't+C,

where C, is a contant which does not depend on r or x, when n periods remain. If 1) sk+

Bk+4k+ -+ 5"k, then the insured should report his loss; otherwise he should not.

PROOF : The proof is by backward induction on n. When n=2, 3,4, the result is true.

Now we assume that the result is valid for n~1. That is, we can write
Voo (r, x) =min (x, (Bk+4°k+ k4 -+ 8" k) x) +r+ar+ 5+ 8+ +45 +C,

where C,., is a constant which does not depend on r or x, when (n-1) periods remain.
To prove the result, we consider 2 cases.

(i) Suppose V.. (r,x) =x+r+sr+4r+5r++,0r+Co, (e, fk+ 5%+ 5k+ 452k D 1.
Then, by (1),
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V. (r,x) =r+min(x+8EV.., (r, X), SEV.., (r +kx, X})
=r+min(x+pE X+r+sr+pr+5r+-+57r+C,.0),
BE(X+ (r+kx) +8(r+kx) + 5 (r+kx) +8° (r+kx) + -+ 5% (r+kx) +C...})
=r+min(x+sEX+8r+8r+8r+ - +5""'r+5C.-y,
BEX + Br+ gkx + 8+ gtkx + fr+ 5 kx+ - +87'r+ 8" 'kx+ 5C...)
=r+Ar+8r+8r+-+57'r+FEX+AC.., + min(x, (8k+5k+4%k+ -+ 87'k)x)

(i) Suppose V.. (r,x) = (8k+8k+8k+ -+ kix+r+8r+4r+8r+-+5 7 r+C,..(i.e., gk
+ 8’k + Bk +--+ 8k (1). Then,
Vo(r, x) =r+min(x+sEV.., (r, X), SEV.., (r +kx, X))
=r+min(x+5E ((8k+ 8k + Fk+ -+ %) X+r+ 8+ Fr+ 8+ +57r+C,.0),
BE ((8k+ 8k + 8k + - + 4 ’k) X (r+kx) +4(r+kx) +4° (r+kx) +
A lr+kx)++5(r+kx) +C.. ))
=r+min(x+ (#Pk+8%k+ -+ 58"k EX+ s+ r+5r++87'r+5C..,
(Bk+ Ak + - + 57 k) EX 4 r + ghx+ £r + fkx + 51+ fkx+ -+ 87 'r
+ 4" kx+ 8C.-0)
=r+8r+pr+r+ -+ 5+ (Bk+ Bkt + 8K EX 4 SC.-
+min(x, (8k+5°k+5°k+ -+ 8 'k)x)

From (i) and (ii), we now see that Va(r, x) has the conjectured form. Hence, the result
(the insured would report his loss each period until gk+ s°k+ 5’k + -+ 5" 'k = 1)follows.
This completes the proof, ]

The interesting thing from the result is that when we assume the amount of premium
increase is a fraction of the current loss which is reported, the insured’s decision of
“reporting” or “not reporting” the loss does nnt depend on the amount of loss. Rather
it depends on discount factor 8, fractional coefficient k, and the number of periods which
remain. Also, since the optimal reporting strategy for n-period model depends on the
magnitude of Ak+#°k+8'k+--+5"'k, it is clear that the insured is less likely to report
his loss as 3, k, and n increase.

The next section describes the insured’s oplimal reporting strategy when the premium

increase in the next period is a concave funtion of the current loss which is reported.
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3. Dynamic Programming Model where Premium Increase is a Concave
Function of the Claim Size

In this section, we again examine an insured’s optimal reporting strategy which
minimizes his discounted expected costs during a given planning horizon. The model
description is mostly same as in the previous section. However, in this section we assume
that the premium increase is a concave function of the current reported loss rather than
a fraction of it. As before, let r and x denote the current premium and current loss,
respectively, If the insured reports x to the insurance company in order to restore his
wealth position during a current period, then the premium at the beginning of the next
period will increase by A (x), where A (x) 15 a increasing, concave function of x with
boundary condition A () =0.

Let V.(r,x) be the insured’s minimum discounted expected costs when the current
premium and the current loss are r and x, respectively, and n periods remain. If we
assume that the costs incurred from the next period are discounted by factor 8 (0 (8¢ 1),

then the dynamic programming recursion for V, is

r+x+5EV, (1, X) {not report)
V. (r, X) =min
r+AEV., r+ A(x), X). (report)
=r+min(x+AEV,., (r, X), BEV, . (r+.\ (x), X)) (2)

As in the previous model, the insured's goal is to identify the optimal reporting strategy
each period in order to minimize the sum of the current costs and the discounted expected
costs in future periods which are affected by his current reporting decision.

Using (2), and assuming V,=0, we hive, when n=1,
Vi, x)=r+minlx, 0)=r
which says that the optimal decision for n=1 is ‘report”, and

Vilr,x =r

When n=2, we have

Vo (r, x) =r+min(x+8EV, (r, X), AEV, (r + A(x), X))
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=r+min(x+4E(r), SE (r+ Alx)) )
=r+min(x+ar, fr+BAX) )

=r+Ar+min(x+5AX) )

Since A (0) =0, the insured’s discounted expected costs from both decisions have the
same intercept (r+p4r). Also, A(x) is increasing and concave in x(=0). So, it is clear
that linear function x and concave function A (x) will intersect at a certain point x, which
is unique and greater than or equal to 0. Let x¥(=0) be this point.*’ Then, the optimal
decision for n=2 depends on the size of the current loss x. That is, with a critical point,
x¥, the optimal reporting sirategy for n=2 is characterized as follows :

if x {x¥, then the optimal decision for n=2 is “not report”, and
Vo(r,x) =x+r+48r
Otherwise, the optimal decision for n=2 is ‘report”, and
V. (1, x) =8A 1x) +r+4r

Now, when n=3, we consider 2 cases.

(i) Suppose V,(r,x) =x-+r+4r. Then, by (2),

Vilr,x) =r+min(x+8EV,(r, X), SEV, (r+ A (x}, X))
=r+min(x+8E (X+r+81r), BEX+ t+ A X)) +8r+A(x)))]
=r+min(x+SEX + gr+ A°r, SEX+ Ar+ 51 (x) + 81+ 524 (x))
=r+Ar+ 8+ SEX+min(x, (545 A (x))

(ii) Suppose V,(r, x) =aA (x) +r+5r. Then,

V,(r, x) =r+min(x+8EV, (r, X), SEV, (r + A (x}, X))
=r+min(x+3E (BA(X) +r+40), SEBA X))+ T+A X)) +3r+A(x))))
=r+min(x+AEA (X) +8r+ 51, FFEA (X) +8r+8A (x) + 51+ 524 (x))
=r+ar+ 4+ EA (X) +min(x, (5+5°) A(x))

From (i) and (ii), we see that the optimal decision for n=3 also depends on the size
of the loss x. That is, for n=3, there also exists a unique critical point of x, written
x¥(=0), at which linear function x and concave function (8+5°) A (x) intersect. Hence,

the optimal reporting strategy for n=3 is described as follows :
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if x (x¥, then the optimal decision for n=3 is “not report”, and
Violr, x) =x+r+ ir+ 5r+C,
Otherwise, the optimal decision for n=3 is “report”, and
Volr, x) = (8+5) A (x; +r+8r+5r+C,

where C; represents a constant which does not depend on r or x, when 3 periods remain,

In this fashion, we conjecture that
Vo(r, x) =min(x, {8+ 58+ 8+ +5VA (O +r+pr+ 80+ 5+ +5'1+C.

where C, is a constant which does not depend on r or x, when n periods remain. If the
conjecture is true, then the optimal reporting strategy for the general n-period model
depends on the size of loss (i. e., whether or nnt the size of current loss is greater than
the critical point of x at which linear function x and concave function (5+8+5+ - +5")

A (x) intersect). The formal argument is described in Proposition 2.

PROPOSITION 2 : Suppose the premium increase depends solely on the amount of the
current reported loss x, and the amount of increase is a concave function of x, written
A(x). Then, for a given planning horizon, say n(=2) periods, V.(r,x)has the following
form

Vo(r, x) =min (%, (A+ 8+ 84 +8"VAG) ) +r+ 8+ 8+ 5 r+ -+ 58 'r+C,

where C, is a constant which does not depend on r or x, when n periods remain, and
there exists a critical point of x, written x¥, such that x¥= (8+8*+ 5+ +8") A (x¥)
(i.e., x¥ is the point at which the insured would be indifferent between reporting and
not reporting). If x » x¥, then the insured should report his current loss: otherwise, he

should not report it.

PROOF : The proof is by backward induction on n. When n=2, 3, the result is true. Now

we assume that the result is valid for n-1. That is, we can write
Voulr, x) =min(x, (B+5+8+ -+ )AD ) +r+8r+5r+5r+ -+ 58 1+C,.,

where C. . is a constant which does not depend on r or x, when (n-1) periods remain.

Also, let x%., denote the critical point such that x* ,= (8+ 4+ 5+ +5 ) A(x%,). Then,
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to prove the result, we consider 2 cases.

(i) Suppose V., . (r,x)=x+r+ar+gr+4r+-+ 7 r+C, (i.e.,x<x%.). Then, by (2),

V. (r,x) =r+min(x+8EV., (r, X), BEV..,(r+A(x),X))
=r4+min(x+8E X +r+sr+8r+8r+---+3r+C,0),
BE(X+ G+ A X)) +8r+A X))+ T+AX)+8+A X))
+ 457 r+A X)) +Con))
=r+min{x+AEX+sr+ g r+5r+-+47't+Cayy
BEXH+Ar+8A (x) + 8+ 80 %) + ' r+£AE) + o+ 57T+ A (x) +5C.0)
=r+Ar+ AT+t + 8 r+ BEX+AC, - min(x, (A 487D A X))

(i) Suppose V... (r,x) = (A+ A+ + -+ 58 DA () +r+srtr+pr+--+87r+Co (e,
x>x* ). Then,

V. (r,x) =r+min(x+8EV.., (r, X}, BEV...(r+A (), X))

=r+min(x+8E ((B+ B+ 5+ + A DAC) +r+pr+r+ 81+ +57r+Co),
BE((B+A+A+ -+ DAX) + 1+ AX) +80+A X)) +8 T+ A Kx))
+8 A ®)+ 8+ A (X)) +Ca)]

=r+min(x+ (2+ 8+ -+ VEA(X) + 8+ 51+ 81+ -+ r+8C.,
(B4 A+ +8VEAX) +8r+ 48 (x) + 5 1+8 A (%)
+A8+AAX) F 8 A x) +HAC )

=r+Ar+8r+ 8+ 87+ (A 8 DEAX) +5C.
+min(x, (B+8+48++5")Alx)]

From (i) and (ii), we have shown that V., (r, x; has the conjectured form. Hence, the
result follows. This completes the proof. ]

This result, which depends on the concavity of A({x), is quite intuitive. If the insured
has a small loss, then he should not report it since the premium increase (if he reports
it) is relatively large compared to his loss. On the other hand, if the amount of loss is
quite large, then the insured should report it since the premium increase is relatively small
compared to the loss. That is, the insured would rather submit to the premium increase
than suffer a large loss. The reasoning behind this intuition lies in the concavity of A(x).

Also, this intuition explains the reason why we do not consider the case where A(x) is
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a convex function of x. If A(x) is convex, then the insured’s reporting strategy will be
the opposite. That is, the insured will repor’ a small loss, and he will not report a large
loss. However, this argument leads to unrealistic results. After all, the one “big” reason
why we have insurance is that we want to protect ourselves from a possible disaster,
not from a petty loss.

The next result from the model is that tae critical point of the size of loss increases
as the number of periods which remain increases. Let x* be the critical point when the
current premium and loss are r and x, respectively, and n periods remain. Then by
Proposition 2, x¥= (8+45°+5"+---+8"") A (x*). With this definition, we prove the following

corollary.
COROLLARY 1:x¥ <x%¥ < - =x*, <x*
PROOF : It suffices to prove that when n=3,
XV = (A8 457" A (x¥) (3)

Now, by definition, x¥= (§4+52+4°+ - +5" ) A (x¥)
= (B8 ++ -+ A ) +5 A (x¥)

However, 5" 'A(x*)=0 since A(-) is increasing with boundary condition A (0) =0.
Therefore, (3) follows. This completes the proof. [J]
The result implies that the longer the plinning horizon is, the less likely the insured

is to report a small loss, as the critical point of the size of loss increases,

4. Summary

We considered an individual insured who wishes to seek a way of determining his optimal
reporting strategy each period, when he has the option of reporting or not reporting his
fault-related accidents. Assuming that future premium is continually adjusted by the
insured’s loss experience, the insured would not report every loss incurred. Dynamic
programming was employed to model the problem over time. The goal of each model is
to determine the insured’s optimal reporting strategy each period which minimizes his

discounted expected costs over a finite planning horizon. In each dynamic programming
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model, it was assumed that the premium each period is adjusted according to the size
of the reported loss during the previous period. We examined two cases.

In the first model, the amount of premium increase in future period was assumed to
be a fraction (a linear function) of the size of the insured’'s claim during a current period.
The following results were derived from the model.

1. The insured’s optimal reporting strategy each period does not depend on the size of
the reported loss, Rather, it depends on the discount factor (5), fractional coefficient (k),
and the number of remaining periods in his planning horizon (n). If gk+4k+3k-+--+5"'k
<1, then the insured should report his loss. otherwise he should not.

2. The insured is less likely to claim his loss as the above parameters (s, k, and n) in-
crease.

In the second model, we considered the cise where the amount of premium increase
in future period is a concave function of the size of the current claim. The results from
the model are as follows.

1. Let x be the size of the current loss and A(x) be the amount of premium increase
if the insured reports x. Then at each period, there exists a critical number x* such that
=B+ +F+ -+ A (x*), where 5 and n denote the discount factor and the number
of remaining periods, respectively. If the current loss is greater than this critical number,
then the insured should claim the loss; otherwise, he should not.

2. The critical number x¥ increases with the number of periods remaining in the insured’s
planning horizon. This result implies that the insured is less likely to report a small loss

as he has more periods to go in his planning horizon.

5. Concluding Remarks

As a pioneering work, we attempted to identify the insured’s optimal reporting strategy
of his at-fault accidents over a given planning horizon. Unfortunately, there is no existing
study which is concerned with this type of problem. Therefore, we hope that this study
would be a stepping stone to further research of this kind. Of course, this study has

limitations, as most of others do, which we would like to mention. In this paper, we
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have neglected a deductible in the model formulation. In reality, however, many insurance
policies entail a deductible. This fact is also warranted by several studies (2,5, 6, 7, 8.
Therefore, it would be a logical extension of the problem to include a deductible in the
model formulation and examine how the insurcd’s optimal reporting strategy is affected
by the existence of a deductible, Next, it was assumed that the premium each period
is adjusted according to the size of the insured’s claim (reported loss) during the previous
period. A more complete modeling, however, would be the one such that the premium
each period is adjusted to reflect both the frequency and the size of the insured’s claims.
Further, if we restrict our assumption such that the current premium is affected by the
number of claims and the size of claims only in a specific length of time (e.g., past
3 or 5 years), the modeling would be much more complicated, even though it is more
realistic. Such a model might be mathematically intractable; however, it will be the
promising problem to think about in order to reduce the “gap”between theoretical modeling

and practice,

Footnotes

1. Our analysis is delimited to those types of insurance that are “experience rated.” The
“experience rating” is an insurance pricing system in which the insured’s loss ex-
perience determines the premium for the current protection.

2. It is true that many decision making problems deal with an individual's expected utility
of wealth and they are to maximize his expected utility (or equivalently minimize his
expected disutility) over a planning horizen. This paper, however, deals with an
individual's expected costs rather than his expected utility. The reason for this is that
one is sometimes more sensitive to his wealth decrease than to utility of it. The results
we will derive in this paper would be the same for both cases.

3. It is assumed that F has a mass of probability at 0 (i.e., no loss).

4, If A7 (x) {1 for x=0, then x¥=0, We all»w this case.
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