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Abstract

The hydrodynamic aspects of bow flare impact are discussed and the assumptions implicit
in typical flare impact calculations are examined. Calculations based upon a pressure release free
surface boundary condition are presented. While this simplified boundary condition eliminates
the possibility of important factors such as splash-up and above-surface wetting, it has the
significant advsntage of being computationally simple. Both three-dimensional and two-dimens-
ional results are compared with experiments. Errors resulting from the approximate free surface

condition are examined. Also included in the two-dimensional and three-dimensional analysis

are longitudinal distributions of the vertical bending moment and vertical shear force.
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1. Introduction

The structural response of a ship in a severe
seaway has been the subject of many studies over

the years, When the relative motion between the
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ship and water surface exceed some threshold level,
large impact forces will occur. Recent reports from
the 8th and 9th International Ship Structures Cong-
ress (ISSC(27] and ISSCL28)) describe many of the
state-of-the-art methods used in the prediction and
analysis of ship impact. These reports conclude that

revised manuscript received: August 2, 1990

* The University of Michigan, Dept. of Naval Architecture & Marine Engineering
** Member, Korea Research Institute of Ships and Ocean Engineering



Evaluation of Impact Loads Associated with Flare Slamming 57

there are still many unanswered questions involving
the calculation of impact and slamming loads. In
particular, issues relating to the scale effects of model
tests, discrepancics between the classic drop tests
and standard seakeeping experiments, and the effects
of implicit assumptions in theoretical/empirical cale-
ulations go unresolved. In order to completely desc-
ribe the impact force and the resulting structural
response, various components, such as entrapped air,
hydroelastic interaction, and nonlinear free surface
mechanics, must be correctly taken into account,

Due to the complexity of the problem and due to
a real need for engineering answers, the “science”
of hydrodynamic impact includes a considerable
amount of empiricism. For example, a large effort
has been made in predicting the maximum impact
pressures due to bottom slamming. Typically the
expressions for the pressures are functions of hull
entrance angles, relative velocities between hull and
water surfaces, and empirical correction factors based
upon drop test measurements, This approach has had
some measure of success when compared with model
seakeeping experiments and full scale data (Ochi and
Motter [17) and [18)). Researchers, however, have
also integrated these pressures to find the structural
shear and bending moments due to impact. Example
of this are Qchi and Motter(18] or Belik, et al.(6].
The integration of the empirically determined pres-
sure implies additional assumptions about the press-
ure’s spatial and temporal distributions. These assu-
mptions are often not clearly stated or understood
and it is not obvious that the correction factors for
the peak pressures can be adjusted to correctly include
all the effects that contribute to the integrated impact
loads.

A special, yet important part of ship impact is the
loading imposed upon the ship’s structure due to
above-mean-waterline shape. In numerous instances,
damage has been noted in the bow and forebody
regions of ships with large flare angles. The flare
impact problem includes many of the same mechan-
isms that are found in the bottom impact problem.
Both may be influenced by entrapped air, hydroelastic

interaction, and mnonlinear free surface mechanics.
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The hydrodynamic force due to initial impact, such
as that found in bkottom slamming, has been studied
extensively. Using perturbation techniques, researc-
hers from Wagner[24] to Armand and Cointe(2]
have shown reasonable agreement for initial impact
forces acting on two-dimensional cylinders. However,
the extension of these zero or near zero draft theo-
ries to deep-draft flare impact may not be possible.
The purpose of this paper is to investigate the
hydrodynamics of three-dimensional flare impact.
Simplifying assumptions will be noted and their
effects will be discussed. Comparisions between three-
dimensional and two-dimensional potential flow cal-
culations will be made. The two-dimensional analysis
is based upon the standard strip theory assumptions
commonly found in impact predictions. The theore-
tical results include the total impact force, wvertical
shear, and vertical bending moment for two bodies.
Comparisons will be made between the calculated

and experimentally measured impact forces.

2. Problem Definition

The impact pressures and loads are assumed so
be due to a rigid body entering otherwise calm water.
The flow will be assumed to be potential. Viscosity,
surface tension, air entrapment, compressibility of
air or water, and hydroelastic interaction will be
ignored.

Viscosity is generally thought not to be important
in vertical impact. Much of the force comes from
the inertial effect of the water when the body acce-
lerates the fluid out of the way. This, however,
may not be true when horizontal impact is a factor,
See Troesch and Kang(21) Figure 18, where the
experimentally-measured horizontal impact component
for a dropped body with forward speed rises at a
significantly higher rate than the theoretical predi-
ction. The difference of the free surface elevations
at the fore and after bodies is one of the important
factor for the horizontal impact.

Surface tension will certainly have an effect on
the behavior of the water as it forms a spray sheet

or droplets, and any analytical model that includes
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splash-up should examine its effects (Lin(14]). Vessel
visibility is an example of when spray or the jet-like
behavior of water due to impact may be important.
The impact load, though, is due to pressures acting
on the actual boundary and spray sheets do not
significantly contribute to these forces.

Air entrapment is a significant factor when flat
or nearly flat bodies strike the water surface. Chuang
and Milne(10] have demonstrated through experim-
ents that the air trapped during drop tests provided
a cushioning effect which typically reduced the
maximum impact pressure, However, this phenome-
non was most prevalent during experiments invol-
ving two-dimensional, flat bottorn models or two-
dimensional wedges with a deadrise of 1 degree or
less. For wedges with deadrise of 3 degrees or more,
or for three-dimensional models, the trapped air was
less and consequently, the impact pressures greater.
In general, when there are mechanisms by which
the air may escape, such as a relatively large dead-
rise on two-dimensional shapes or areas of relatively
shapes, air

high curvature on three-dimensional

entrapment will not be important., For bow flare
impact, both of these conditions are met.

The importance of the hydroelastic response of
the vessel or experimental model in determining the
total impact induced stress has been demonstrated by
many researchers. For example, see Belik, et al.(5],
Belik and Price(7), Yamamoto, et al.[22], or Toki,
et al.[20). Included in the structural calculations
These hydr-

odynamic loads may be separated into two separate

are the external hydrodynamic forces.

components: the first due to a rigid body impacting
upon the water's surface (an excitation or forcing
function), and the second due to the structure’s
elastic response (a reaction or added mass and dam-
ping force). Since the stated purpose of this chapter
is to investigate the first kind of force, that assoc-
iated with rigid body impact, hydroelastic interaction
will not be considered except when required to
properly See,
example, the Appendix of Troesch and Kang (21].

interpret experimental results. for

Consider, then, an ideal fluid where a perfectly

rigid body passes through the free surface. Additional
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details of the problem formulation and an alternative
solution technique may be found in Troesch and
Kang(21].

z=C(z,3,¢) M

where (z,y,2) is a right-handed coordinate system

The free surface is defined by

with z positive upwards and the origin located at
the mean free surface. Newman(16), among others,
derived the complete free surface boundary condition,
including both kinematic and dynamic considerations,

as
+g-—i FOpgeT aﬁ‘i+~17¢ P (PP-F$)=0

2)
where ¢ is the velocity potential and Eg. (2) must
be satisfied on the surface defined by Eq. (1). The

governing field equation for potential flow is, of

a::2

course, the Laplace equation. The body boundary
condition, satisfied on the instantaneous body surface,

is expressed as

_}]i =Ve-n [€))

where V is the velocity vector of the body and # is
the outward unit normal. To complete the statement
of the above boundary value problem, radiation
conditions must be given. Typically these require
that the fluid velocity components generated by the
body motion approach zero at large distances from
the body.

If a velocity potential satisfying the above condi-
tions can be found, then the pressure may be dete-

rmined from Bernoulli's equation as

..... g¢V+ (4)

Once the

pressure distribution becomes known, it can be inte

V¢ F¢-+gz=const

where g is the gravitational constant,

grated and the forces are found in a straight-forward
manner,

In this paper, only vertical motion is considered.
The velocity vector, V, used in the body boundary
condition is determined from the solution of the
equations of motion .in the vertical plane shown

below:
(5)

The vertical velocity, £(¢), and displacement, z(¢),

Fz:mEZ—J pn.dS
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are found through the usual integration formulas of
2(t):f;£(t)dt
¢
2= #(Oa (6)

3. Approximate Determination of
Impact Forces

A general, three-dimensional solution to the bou-
ndary value problem posed in Eqs. (1)~(4) has not
vet been found. The complexity of the nonlinear
free surface and body boundary conditions requires
that simplifying assumptions be made in order to
calculate the impact forces, See Greenhow(11] for
a detailed review of many of the available methods.
(1)~(4) reveals that both

the spatial and temporal variables are possible sour-

Examination of Eqgs.

ces of difficulties. In other words, large changes in
time and space are both significant contributors to
the physics of impact. Generally, it is possible to
catalogue the various cxisting theories based upon
their approximations of the boundary conditions and
their assumptions regarding rigid body dynamics.
These include, but are not limited to, asymptotic
expansions of Eq. (2) with respect to time and space,
assumed constant velocity during impact, shallow
draft approximations, and assumed two-dimensional
behavior. There are extensive literature surveys on
the subject elsewhere (i.e. ISSC[27] and ISSC(28])
and they will not be repeated. Rather, a few relevant
references will be mentioned here to illustrate the
effects of the various assumptions,

The initial efforts to understand impact started
with von Karman(26] and was extended by Wagner
[24]. Both of these two-dimensional theories used
implicit shallow draft approximations and satisfied
the equipotential free surface condition of

$=0 D
on z=0. Wagner(24]) derived a “wetting correction”
that increased the maximum predicted impact force
by a factor of two over von Karman's earlier work.
Various extensions to these theories were tried in

the following years. Sometimes these extensions were
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derived in a consistent manner and other times they
were not. Armand and Cointe(2] carefully examine
the impact forces on a circular cylinder using mate-
hed asymptotic expansions. Their results demonstr-
ated that Wagner’s wetting correction was indeed
valid at the instant of impact, but additional terms
were required for later time and larger depths.

With the increase of computational power brought
by the introduction of super computers, researchers
have attempted to solve the two-dimensional equiv-
alents of Eqs. (1)~(4). The method of choice is
based upon the Cauchy integral theorem including
the rigid body boundary (Vinje and Brevig [25))
and a mixed Eulerian-Lagrangian description of the
free surface (Longuet-Higgins and Cokelet {15]).
See, for example, Greenhow and Lin(12]), Yim(23],
and Greenhow[11]. The differences in the various
calculations may be related to the way in which the
intersection between the body and free surface is
approximated. Reasonable agreement for pressure
distributions on small to moderate wedge angles
below the mean free surface has been demonstrated.
The principal difficulty seems to be in the description
of the water jet generated by the impact. Because
the method uses complex variables and stream fun-
ctions, it is difficult to see how this method can be
extended to three-dimensions without resorting to
some form of strip theory.

If the assumption of constant body velocity is
made, then the hydrodynamics of impact may be
described by self-similar lows as shown by Shiffman
and Spencer(19]. The theory is exact for two-dime-
nsional wedges or three-dimensional axially symm-
etric cones. Shiffman and Spencer(19] gave an
expression for the impact force in terms of the time
rate of change of the fluid momentum, To find this
momentum, the velocity potential must be integrated
over the body boundary and over the exact free
surface which generally is not known. Their paper
describes a complex iterative procedure by which the
solution may be determined and they gave results
for a single case—a cone with a 120 degree vertex
angle. They concluded that the procedure was too
intensive

computationally introducing numerical
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errors. Conscquently, an appr'oximate theory was
then suggested which employed elements of Wagner’s
[24] original work. This approximate theory equated
the time rate of change of the fluid momentum to
the time derivative of the product of the body
velocity and the infinite-fiuid added mass. The added
mass at any instant was found by increasing the
effective draft of the body to account for a wetting
correction and then solving the classical infinite fluid
boundary value problem. This approach of setting
the impact force equal the velocity multiplied by the
derivative of the infinite-fluid added mass is funda-
mentally correct only at the instant of contact when
the draft is near zero. However, the method has
seen a wide range of applications for deep-draft flare
impact loads (Belik, et al. (5] or Yamamoto, et al.
{221.

The reason that it may be a good approximation
will be discussed below. The approximate theory of
Shiffman and Spencer {19] described above has been
extended in curious ways by some researchers. In
an effort to get better correlation between theory
and experiment, the frequency-dependent added mass
has been substituted for the infinite-fluid added mass.
See, for example, Beukelman(8]. In that type of
impact pressure or impact force calculation, the
characteristic frequency is typically based upon the
predominant frequency of encounter for the vessel
in a seaway. Impact hydrodynamics is clearly a
highly nonlinear, transient phenomenon. Under
certain circumstances (shallow drafts and small time
scales), consistent arguments can be made for the
use of the infinite frequency added mass method
(Armand and Cointe (2]). However, there is no
analytical basis for the use of frequency dependent
coefficients which were derived for linear, frequency
domain hydrodynamics and that method is not reco-
mmended.

The goal of the work presented in this paper is
to examine a computationally simple three-dimensi-
onal model of bow flare impact. Starting with the
free surface condition, Eq. (2), it is assumed that
the time duration of impact is much smaller than

that normally encountered in normal ship motions,
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The consequence of this is that time derivatives are
relatively large compared to the rest of the terms in
Eq. (2).
surface condition shown in Eq. (7). The complete

The result is von Karman’s [26) free

body boundary condition of Eq. (3) is retained.
Unlike some previous theories that assumed constant
velocity during impact, the velocity here is determ-
ined from the solution of Egs. (5) and (6) in incr-
emental time steps. The theoretical model then, has
the exact body boundary condition on that part of
the body’s surface below the mean free surface and
the simplified equi-potential free surface condition
on z=0. This boundary value problem can easily be
solved as described by Troesch and Kang (21] or
the method outlined in the Appendix A2. A deflei-
ency of the model is its inability to describe any
of the hydrodynamic pressure above the mean wat-
erplane, z=0. Effects such as spray or jet-like beh-
avior are not present. The extent that this is impo-
rtant in predicting bow flare impact forces will be
examined.

In the actual calculations, the boundary value
problem described by Eqs. (3) and (7) is solved in
a body fixed coordinate system, (z’,5’,z’). Since
Bernoulli’s equation is expressed in inertial coordi-
nates, a transformation yields

2L

36(x,0) 1.
, e e A

+Lre-rster } (8)

where p(a’,t) is the pressure in body coordinates
and the body velocity vector, ¥, has components
(U, V, W). The first term of the right-hand side of
Ea. ®), -2£,
multiplied by the z-component of the unit normal

that when

represents a pressure,

and integrated over the hull, is equal to the product
of the velocity and the time derivative of the added
mass. Using this particular term to represent the total
impact force, as discussed in the paragraph describing
the Shiffman and Spencer [19]) method, ignores the
convective and quadratic terms of Eq. (8). Troesch
and Kang [21) have examined the effect of these
two terms for the special cases of a sphere and an
axially symmetric body with flare. They found that
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the forces associated with these terms are initially
small during the first instant of impact. Later, when
the total force on the sphere reached its maximum
impact value, the two forces became significantly
larger, but opposite in sign, thus effectively making
only a small net contribution to the impact load,
It is not obvious that this type of cancellation is a
general characteristic of impact calculations. Conse-
quently, all the terms of Eq. (8) should be used
when determining impact pressures.

Another characteristic of state-of-the-art impact
theories is the use of two-dimensional calculations
coupled with strip theory assumptions to give three-
dimensional results. Examples can be found in Ochi
and Motter {17) and (18], Yamamoto, et al. [22],
Belik and Price (7], Toki, et al. (20], and Bishop,
et al. [9].

strip theories has long been accepted in normal linear

The usefulness of the slender body or

seakeeping analysis. However, the usual seakeeping
quantities of interest are global hydrodynamic forces
or bending moments and shear forces mnear the
middle of the hull. These forces and moments are
typically insensitive to end effects where strip theory
approximations are less valid. Bow flare impact and
the resulting primary structural loads occur in areas
of high longitudinal curvature. The applicability of
strip theory in these calculations is questionable.
In fact, there is evidence that strip theory in the
bow region may overpredict the impact force by a
significant amount. Using an example similar to
Troesch and Kang's (21) Figure 1,

vertical hydrodynamic force acting on a sphere as

consider the

it passes through a previously undisturbed free
surface. To simplify the calculations for this parti-
cular example the sphere will be assumed to maintain
a constant velocity during impact. The theoretical
boundary value problem is represented by Eqs. (3)
and (7). The pressure, as given in Eq.(8), is found
by both the three-dimensional integral equation
method explained in the Appendix A2 or a two-
dimensional strip theory. The strip theory just sep-
arates the sphere into strips, assumes no interaction
between the strips, and for each draft solves a two-

dimensional integral equation. The vertical force
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e CAL. (3-0)

Fig. 1 Experimental and theoretical comparison
of the vertical slam coefficient for a sphere.
(drop height=6lem (2.0ft))

for both methods was then found by integrating the
pressures as shown in Eq. (5). The vertical slam

coefficient, C.s, can be defined as

= mz e
T

where m is the mass, % is the vertical acceleration,

9
4

p is the water density, L is a representative length,
(for the sphere L is the diameter, for the cylindrical
body or the flared body it is the overall length).
Vo is the initial vertical impact velocity. Inspection
of Eq. (8) shows that all the terms of Bernoulli’s
equation except for the buoyancy term, gz, may be
normalized by the square of the velocity. Consequ-
ently, the plots of C.; shown here will become drop
height dependent as time and draft increase. Results
of the calculations for a drop height of 6lcm (2. 0ft)
along with experimentally measured forces are sho-
wn in Fig. 1. The experimental data was taken
from Troesch and Kang (21). Clearly the strip
theory approximation is inappropriate for this case.
Whether or not this conclusion is also valid for the
flared forebody of a ship will be discussed in the
next section. There the total vertical impact force,
the distribution of the vertical bending moment,
and the distribution of the vertical shear force will
three-dimensional

be fcomputed wusing two and

theories,
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4. Presentation of Theoretical and
Experimental Results

In order to investigate the validity of the assum-
ptions listed in the previous sections, the hydrody-
namic impact forces acting on two different body
shapes are examined. The body shapes are shown
in Figure 2. One has circular cross sections with
a cylindrical parallel midbody. The ends are halves
of hemispheres. The other body has a bow flare

lshape with elliptical water lines. Both shapes have
length to beam ratios of 2.0. The cylindrical shape
has a beam-to-draft ratio of 2.0 while the flared
body has a beam-to-draft ratio of 1.0. Theoretical
pressures were calculated by both two-dimensional
and three-dimensional boundary integral methods,
The three-dimensional method solved the boundary
value problem given by Egs. (3) and (7) and is
described in the Appendix A2, The two-dimensional
or strip method separated the bodies into vertical
segments and applied the two-dimensional equival-
ents of Eqs. (3) and (7) to the boundaries. Two
scale models based upon the lines shown in Figure
2 were built and tested in the Ship Hydrodynamics
Laboratory (SHL) at The University of Michigan.

Their principal particulars and the experimental
techniques used are listed in the Appendix Al. The
vertical impact force as function of time for the
cylindrical and flared bodies is shown in Figures 3
and 4 respectively. An approximate drop height of
6lem (2.0 ft) was used. The force has been norm-
alized and is represented by the vertical slam coeffi-
cient, C,s of Eq. (9). For both bodies, the overall
length is chosen as the characteristic length, I, in
Cus. Three different trim angles of 0.0, 5.0, and

flared bodies
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10.0 degrees are used. Theoretical calculations based
upon the three-dimensional and two-dimensional
methods are shown by the solid and short dashed
lines respectively. The experimentally measured force
is given by the intermediate dashed line. Based upon
the information displayed in Figures 3 and 4, the
following observations may be made:

(a) The two-dimensional and three-dimensional
theoretical curves are surprisingly close when com-
pared to the results for the sphere, a body with a

beam to draft ratio of 1.0, shown in Figure 1.
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Fig. 3a Experimental and theoretical comparison
of the vertical slam coefficient for the
cylindrical body (zero degree trim, 6lcm
(2.0ft) drop height)
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Fig. 3b Experimental and theoretical comparison
of the vertical slam coefficient for the
cylindrical body (five degree trim, 6lcm
(2.0ft) drop height)
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Fig. 3¢ Experimental and theoretical comparison
of the vertical slam coefficient for the
cylindrical body (ten degree trim, 6lcm
(2.0 ft) drop height)
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Fig. 48 Experimental and theoretical comparison
of the vertical slam coefficient for the
flared body (zero degree trim, 6lem
(2.0 ft) drop height)

(b) The slam coefficient for the flared body is
characterized by two maxima, one occurring during
the initial contact between the body and water and
the other when the flared sections pass through the
surface. The second maximum due to the flare has
a value equal to or greater than the first maximum.
The results of the strip method in Figs. 4b and 4c
show fluctuations after the second maximum. It
may be due to numerical instability.

(¢) The variation of the trim angle from 0.0 to
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Fig. 4b Experimental and theoretical comparison
of the vertical slam coefficient for the
flared body (five degree trim, 6lcm (2.0
ft) drop height)
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Fig. 4¢ Experimental and theoretical comparion
of the vertical slam coefficient for the
flared body (ten degree trim, 6lem (2.0
ft) drop height)
10.0 degrees produces a significant decrease in the
maximum value of C,; for the cylindrical shape and
for the first C,s maximum in the flared body curve.
Those C,; values decrease by approximately a factor
of two over this range of trim. The decrease due
to trim angle change in the second maximum for
the flared body is not as large. In fact, the experi-
mental value remains essentially equal for trim
angles from 0.0 to 5.0 degrees and then decreases

slightly at 10.0 degrees,
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(d) The comparison between theory and experim-
ent for the C,; maximum of the cylindrical shape
and the first maximum of the flared body is good.
However, the second C,; maximum for the flared
body was consistently overpredicted, with the largest
error occurring at a trim angle of 0.0 degrees and
the smalles? at 10.0 degrees.

(e) The nondimensional time coordinates for the
C.. maxima were underpredicted, predicted correctly,
or overpredicted depending upon the body and trim
considered.

The experimental results shown in Figures 3 and
4 were representative time histories of a series of
impact experiments. The bodies shown in Figure 2
were dropped from three drop heights, 6lcm (2.0 ft),
9lcm (3.0ft), and 122cm (4, 0ft), with three different
trim angles, 0.0, 5.0, and 10,0 degrees. Each test
condition was conducted at least twice and sometimes
as many as five times. The values of the single Cus
maximum for the cylindrical shape and the two Cus
maxima for the flared body were tabulated and
averaged. The slam coefficient maximum for the
cylindrical body is due to bottom impact. The two
slam coefficient maxima for the flared body are due
to bottom impact and flare impact respectively. The

averaged C,; values of the maxima for the cylind-

Table 1 Average slam coefficient maxima for the
eylindrical body

Drop Height

Trim Angle (deg)

(em (££)) 0.0 | 50 | 100
61(2.0) 1.17 0.83 0.55
91(3.0) 1.02 0.85 0.54

0.55

122(4.0)

0.86

Table 2 Average slam coefficient maxima for the
flared body (first maximum/second
maximum)

Drop Height Trim Angle (deg)

(em (ft))

0.0 | 5.0 1 10.0
61(2.0) 0.30/0.34] 0.26/0.34) 0.21/0.32
91(3.0) 0.26/0.28 0.24/0.28\0.20/0.26
122(4.0) 0.26/0. 26| 0.24/0.25! 0.21/0.24
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rical and flared bodies are given in Tables 1 and 2
respectively.

Examination of Tables 1 and 2 illustrates some
of the uncertainties associated with impact experim-
ents and more generally, with impact hydrodynamics.
If the assumptions listed earlier in this paper were
valid, such as the assumption that air entrapment
was unimportant, then the first maximum of the slam
coefficient, C,;, should be invariant with respect to
two drop heights., The buoyancy tcrm in Bernoulli’s
equation, Eq. (8), is effectively zero and the rema-

ining dynamic terms can be normalized by the

Fig. 58 Theoretical hydrodynamic shear distrib-
ution at various nondimensional times
for the cylindrical bedy (Zero degree
trim)

azamgom Filn)

Fig. 5b Theoretical hydrodynamic bending mom-
ent distribution at various nondimensional
times for the cylindrical body (Zero
degree trim)
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velocity squared. Tables 1 and 2 show that this is
only true when the trim angle is not zero. For trim
angles of 5.0 and 10.0 degrees, the slam coefficients
are effectively independent of drop height which is
proportional to the initial velocity squared. For a
trim angle of 0.0 degrees, the slam coefficient dect-
eases as the drop height or velocity increases, Chuang
and Milne {10 suggest that this may be a charact-
eristic of air entrapment. Clearly small changes in
body geometry or entry angle can have a large effect
upon the amount of air that is pushed aside and

upon the subsequent impact load.
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Fig. 6a Theoretical hydrodynamic shear distribu-
tion at various nondimensional times for
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Given the mass distribution of the body and the
pressure distribution as shown in Egq. (8), the
vertical shear, V3(z), and vertica! bending moment,
M;(z), can be determined by the following:

Va(x) =Li(x)— Hs(x)
My(x)=1I5(x)—Hs(z)

Ig(.t):fiﬂ m(zx’)a(z’)dx’
Hy= [ [ pnsds

L2
IS(I):_fx (2’ —x)m(z)a(z")dz’

H@= [ [ omaa!=)ds (10)
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where Li(z) and I;(z) are the inertial force and
moment respectively, Hi(z) and H;(z) are the hyd-
rodynamic force and moment respectively, m(z") is
sectional mass distribution, C(z’) is the hull section
contour at station z’, and a(z’) is the local section
acceleration at station z’. Since the inertial loads
are functions of the mass distribution and indepen-
dent of the hydrodynamics, they will not be included
in the calculations shown here.

The hydrodynamic shear, H;(z), and moment,
H;(x), are shown in Fig. 5 through 11. The hyd-
rodynamic shear and moment are not zero at the
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Fig. 88 Theoretical hydrodynamic shear distribu-
tion at various nondimensional times for
the flared body (ten degree trim)
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Fig. 9b Comparison between 3-D and strip theory
calculations of the hydrodynamic bending
moment distribution for the cylindribal
body taken at time of maximum impact
force (0 trim)

ends. They have been normalized by 1/2p=(L/2)*
V¢ and 1/2pn(L/2)* Vg respectively. In Fig. 5
through 8, the shear and bending moment for the
two bodies at selected values of the nondimensional
time variable, T*Vy/D are shown. The trim angles
in Fig. 5 and 7 are 0.0 degrees and in Fig. 6 and
8, 10.0 degrees. Due to the symmetry of the forces
for impact at zero trim, the shear and moment are
only shown for values of z from zero to L/2 in

Fig. 5 or 7.
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The different figures show that the time of overall
maximum impact does not necessarily correspond to
the time of maximum shear or bending moment.
For a given initial approach velocity, the time of
maximum hydrodynamic shear or moment, depends
upon the geometry of the body, the trim angle,
and the station at which the force or moment is
desired. As an example, consider the shear and
bending moment at an x coordinate of 2z/L=0.0
for the flared body. This is analogous to the shear

and moment acting in a vessel with large flare at

TeVo/D=0.0155
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Fig. 10a Comparison between 3-D and strip“theory
calculations of the hydrodynamic shear
distribution for the flared body taken
at time of first maximum impact force
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Fig. 11b Comparison between 3-D and strip theory
calculations of the hydrodynamic bending
moment distribution for the flared body
taken at time of second maximum
impact force (0 trim)

a distance less than one beam aft of the forward
perpendicular. Generally, the impact loads correspo-
nding to the first maximum of the slam coefficient
curve will produce higher local pressures than the
second maximum. This follows since the magnitude
of the first C,; maximum is of the same order as
the second C.; maximum but is acting over a smaller
area. The trend in the bending moments resulting
from those maxima, however, is in the opposite

direction, When the trim angle is zero, the moment
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associated with the second maximum is approxim-
ately five times as large as that associated with the
first maximum. When the trim angle is ten degrees,
the ratio of these in moments becomes approximately
ten to one. This implies that there two different
hydrodynamic impact loading conditions for forcbody
structural analysis-one for the design of the shell
plating to withstand local impact pressures and one
for the design of the hull girder to withstand global
impact loads. Both should be investigated in order
to insure an adequate ship design.

Comparisons between the two-dimensional sirip
calculations and the three-dimensional calculations
are shown in Figs. 9, 10, and 11. The nondimen-
sional times were selected to correspond to the
maxima in the slam coefficient curves. The cylind-
rical body results are shown in Fig. 9 while flared
body results are shown in Fig. 10 and 11. As in
the slam coefficient figures, Fig. 3 and 4, the strip
theory values are greater than the three-dimensional
ones, but not nearly as much as might have been

expected based upon the curves shown in Fig. 1.
5. Summary and Conclusions

Hydrodynamic loads due to flare impact have been
examined. A simplified theory using the equipotential
free surface boundary condition of von Karman(26]
has been presented. Based upon the results of the
analysis presented here, the following conclusions
may be drawn:

(a) The approximate added mass method of Wag-
ner{24]) and Shiffman and Spencer(19] are strictly
valid only for bottom slamming. For bow flare or
hydrodynamic loads on non-zero draft sections, the
analysis should include the complete form of Bern-
oulli’s equation.

(b) The exact body boundary condition plus von
Karman’s(26] equipotential free surface condition
give adequate engineering predictions for three-
dimensional bottom impact loads, but overpredict the
impact load due to flare. The overprediction was
greatest for the zero trim condition and decreased

as the trim angle increased. This overprediction is

Armin W. Troesch and Chang-Gu Kang

principally a result of using the simplified free
surface boundary condition which neglects the
jet-like behavior of the water.

(¢) Computations based upon strip theory compare
closely with those from the equivalent three-dime-
nsional theory when the beam to draft ratio equals
or cxceeds 2,0. The same conclusion applies to the
vertical bending moment and shear in the bow
region, This can provide a significant savings in
impact calculations since strip theories are easier to
implement than three-dimensional formulas.

(d) The impact load, shear, or bending moment
due to bow flare can equal or exceed that due to
bottom slamming. While bottom slamming may
result in higher local pressures, relatively lower
flare impact pressures, spread over a larger surface,
can produce larger loads and moments.

(e) A slight change in the relative angle between
the hull surface and water can significantly change
the impact force. The maximum theoretical force
occurs at zero relative trim angle and decreases as
the angle increases. This trend is supported by exp-
erimental data, though air entrapment seems to be

a significant factor for impact at near zero angles.
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Appendix A1 Impact Experiments

Impact experiments were conducted in the Ship
Hydrodynamics Laboratory located at The University
of Michigan, Ann Arbor, Michigan. Two models
The model

geometries are shown in Figure 2 and the model

were dropped from various heights.

particulars are shown below in Table 3. The models
were dropped from three drop heights, 6lcm (2. 0ft),
9lcm (3.0ft) and 122cm (4. 0ft), with three different
trim angles, 0.0, 5.0, and 10.0 degrees.

The vertical acceleration was measured with a
PCB Piezotronics Inc. Piezoelectric accelerometer,
model no. 302A02.

frequency greater than 35KHz and was attached to

This accelerometer has a natural

a steel plate installed into the base of the models.
The models were constructed of solid sugar pine in
order to make them as stiff as possible. The total
system had many natural frequencies reflecting the
elastic nature of the composite wood and steel cons-
truction. Spectral analysis revealed that the first
natural frequency was in the range of 400 to 450Hz
with subsequent ones starting at approximately 1000
Hz. The accelerometer signals were digitized at a
sampling rate of 21 KHz and numerically filtered
with a cutoff frequency of 800 Hz. The filtered
result was then analyzed wusing the single degree-
of-freedom technique described in the Appendix of
Troesch and Kang [21].

accelerations, which are directly proportional to the

The maximum impact

Table 3 Experimental model particulars

Cylindrical Body Flared Body

Length 76.2cm (2. 5ft) 76.2cm (2.5ft)

Beam 38.1cm (1.25ft) 38.1cm (1. 25ft)
Draft 19.1cm (0. 625ft) 38.1cm (1. 25ft)
Weight 350. 1N (78.701lbs) 356. 7N (80. 201bs)
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maximum impact forces, were then read from the

resulting time histories.

Appendix A2 Theoretical and
Computational Datail

Consider a body with bounding surfaces and out-
ward unit normal »#. The fluid domain is R. The
bounding surfaces on the free surface, body, and at
infinity are given as S;, S5, and S... The Governing
equations for the velocity potential, ¢(x), and a
Green function G(x, y), are

Pr¢(x)=0

PGz, y)=—8(x—y) an
where x is the vector to the field point, y is the
vector to the source point, and 8(x—y) is the Dirac
delta function. Through the application of Green's
second identity in R the potential is given as

a(z, ¢ (x, )= || -2 42 ] Gas

Si+854 Soo [ on
(12)

where « is an included angle. For the pressure

release problem, the appropriate Green function is

Gla,)y=— o — 1 (13)
= lz—yl [x—y'l

where y’ is an image of y about z=0. Since both
G(x, y) and ¢(x) are zero on Sy and both go to zero
at a sufficient rate far from the body, the integrals
on Sy and S. contribute nothing in Eq. (12).

The body surface is discretized into the small
surface elements 4S;;, (see, for example, Fig. 2)
using a bilinear cubic B-spline algorithm (Barsky
& Greenberg [4] and Barsky [3)). The surfaces
48;; can be represented by the parameters,  and
v. Thus

x=f(u,v), y=glu,v), z=h(u,v) for 0<u<l
and 0<v<1.
This allows the curved panels. The boundary values

of ¢ and _gqs_ are assumed to be bilinear on the
n

subdivided surface 4S;; as shown below.

¢=ap+au+av+asuv and

_grl‘b_:bo+b1u+bzv+bauv

for 0<u<1 and 0<v<1 (14)
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The surface integral of Eq. (12) is evaluated by
using 4-point Gaussian quadrature for the adjacent
elements to the point at which the boundary cond-
itions are applied, or by using 2-point Gaussian
quadrature for the rest of the segments., The weig-
hting factors and abscissas for Gaussian quadratures
are given in Abramowitz & Stegun [1]. The surface
integration and the calculation of the normal vector
on the surface are described in Appendix A3. So,
the simultaneous equations for ¢;; can be obtained
from Eq. (12).

If the body motion is given, pressures, forces, and
moments on a body can be calculated without using
of a complex numerical integration scheme like
Runge-Kutta, In addition, if the body motion is
purely translational, the dipole distribution method
described by Troesch and Kang[21] can be used
rather than relatively complicated direct method of
Eq. (12). But when the body motion is unknown
and may include rotational motion, a complex num-
erical integration scheme is required. In this paper
the fourth order Runge-Kutta scheme is employed
for time integration. From fundamental rigid body

dynamics we have the following relations:

S =oxy (15)
3(ud) _,on , 04
dt =¢dr ta dt (16)

where —0- represents the time derivatives in the

dt

non-inertial body coordinate system and o is an
angular velocity vector. In order to calculate the
pressure on the body, the time derivative of the
potentials required as shown in Eq.(8). Since ¢ for
t<t, is known, only a backward difference formula

[

can be used to get —df— at t=t,.

time stepping formula may experience stability diffi-

But this explicit

culties. As an alternative consider the following
form of Eq. (9).
F=mY

:Hs pndS—mgk
:‘J]-s n(%_z. V¢+%_V¢-V¢+gz)ds
—mgh an

In the above equation the fluid velocity can be

KEEMBEE H27H ¥ 3% 19909 9A

calculated numerically by using the potential on the
body surface. The fluid velocity near z=0 was
approximated as the fluid velocity at 10% girth
length from z=0 because the fluid velocity mnear
z=0 is singular unless the intersection angle is 90
degrees. Substituting Eq.(15) and (16) into Eq. (17)

yields the following equation.

st o3y ] s

_pﬂs [vngXZL—EL/'Vd’
+—%—V¢-V¢n+g2ﬂ]d5‘ as)
Define
pi=mV tof  npdS-tmeli—1o)k (19)
It follows

_ﬁx:‘ﬂﬂs [—qﬂty Xﬂ—nZ'V¢+%~V¢'V¢ﬂ+gw]dS

(20)
with an initial condition
gl(O)ZmZ(O)+pﬂm)n¢d8+mgtol_e @D
Similarly for the angular motion,
HlEH-l-pJ‘J‘S r X npdS (22)

£h=~pﬂs [~¢(Z><n) x@+(rxn)

(~vors+ Lrgrstez)las (@9
with an initial condition
H@=0O0+o[  rxngds (24)

where Il is the angular momentum of a rigid body.

After p; and H; are obtained by applying the
fourth order Runge-Kutta scheme, ¥ and @ can be
calculated from eq.(19) and eq.(22). The advantage
of this technique does not require the explicit time
derivative of the potential, Note the first term of
Eq. (18) is the time derivative of the classical added
mass frequently used in impact calculation and the
added mass multiplied by acceleration. The method
represented by Eq. (18) and Egs. (19) and (20)
were both used calculating the results shown in
this paper.

A simple method can be introduced by using Eq.
(18) if the body motion is given and is translational

in z-direction. First, the added mass and each inte-
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gral in Eq. (18) may be calculated and stored for
small changes in the body geometry. Second, take
the derivative of the added mass in z-direction and
get a term of the first integral in Eq. (18). Third,
all of the hydrodynamic terms can be normalized
by U2L?. The body motion can be simulated by
using the interpolation of the obtained hydrodynamic
and hydrostatic terms. The potentials at the three
time steps are needed to get the time derivative of
the potential in Eq. (17) by using the central diffe-
rence scheme. The boundary value problems at the
three time time steps are solved by using the results
of the simulation. Finally, the shear force and ben-
ding moment at the given time can be obtained by
integrating the pressures calculated from the solut-

ions of the boundary value problem.
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Appendix A3 Calculation of the Surface
Integral and the Normal Vector

The surface integral can be calculated as follows
(Kaplan, 1981):

ﬂs H(z,5,2) d":ﬂs" H(f(u,v), g(u,v),
k(u, v)] VEG—F? dudv (25)
where

z =f(u,v), y=g(u,v), z=h(u,v)
Pi=z ity jtz.k
Po=xui-+y,j+2.k

penn=( ()

F :Pl‘Pzz-%Z; —g%-{—% gg _g%_g_;
SRS,

The normal vector on the surface S is calculated by
using the following formula.

Pix Py
| Py X Pyl

n=

(26)
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