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Abstract- A singular value approach is presented in order to determine the number of
multiple sinusoids from the finite noisy data. Simulations are conducted for Akaike’s in-
formation criterion(AIC), Rissanen’s shortest data description(MDL) and a singular value
approach, for various examples with different SNR’s and methods of estimating frequen-
cies. And then the performances are compared. Simulation results that the singular value
approach is superior to AIC and MDL for FBLP, HOYW and covariance matrix based
methods are investigated.

The approach will contribute to the frequency estimation of multiple sinusoids from
the finite noisy data. Furthermore, this will be applied to the DSPs of communication and
bio-medical engineering.

1. Introduction from finite noisy data is very interisting and prac-

tical problem. It has been studied and used in many

Estimation of multiple sinusoidal frequencies fields[8]1[13]. With the rapid development of
*E & B E¥K Tk HEsHRTSR BIEGS modern technology, the need for estimation of
% frequencies becomes ever increasing and therefore
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multiple sinusoids before estimating the fre-
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quencies. Generally it should be assumed that the
number of multiple sinusoids in the signal was
known. In practice, however, since this informa-
tion is often unknown, it must be determined
before estimating the frequencies. This is a diffi-
cult problem, particularly for short data.

A popular approach for selection of model order
is, of course, the information theoretic criteria,
introduced by Akaike[1][2] and Rissanen.[3]
Wax and Kalaith[5] have extended them to the
sinusoidal case. Chatterjee et al.[6] have recently
proposed a test rule for a generalized autoregres-
sive(GAR) model, based on Bayesian approach,
while Satorius and Alexander[7] used the deter-
minant test on the covariance matrix. These
methods are complex and don’t exactly select the
model order and the number of frequencies. A
simple and powerful method is needed. A new idea
is a singular value approach to examine the singu-
lar values of certain matrices by distinguished the
signal singular value from noise singular values.

In the paper, a singular value approach applied
to the sinusoidal case is presented and investigat-
ed. Using the approach, the number of multiple
sinusoids is to be determined from finite noisy
data. Simulations are conducted for Akaike’s
information criterion(AIC), Rissanen’s shortest
data description(MDL)
approach, in various examples of different SNR’s
and methods of estimating frequencies. And then
performances are compared.

and a singular value

2. Problem Formulation

Consider the following sinusoidal signal
x(t):ia.-sin(a)it-f-svi) (1)

where a;, ¢:€R, w:€(0, 7) and w:* w; for ;+;.
Let y(¢) denote the noise-corrupted measurements
of x(¢)

y()=x(t)+elt) (2)

where e(t) is a sequence of independent and iden-
tically distributed random variable of zero mean
and variance A%, It is assumed that x(¢) and e(s)
are uncorrelated for any ¢ and s.

As is well-known, x(¢) obeys the following autore-
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gressive (AR) process
Alg N x(8) =0 (3)

where ¢! denotes the unit delay operator and
A(g™) is a polynomial of degress 2m defined by

Alg ) =1+aig '+ -+ awmg "= 131(1—2 cos
w:q™ ' +q7") (4
It follows from (2)-(4) that y(¢) obeys the fol-
lowing autoregressive moving average(ARMA)
process

Alg Dyt =A(g N elt) (5)
It is easy to show that the roots of A(g~!) appear
on the unit circle at e**, j=1, 2:--m,.

Next multiplying both sides of equation (5) by a
nonzero polynomial in ¢!, say B(¢™'), we obtain

Clg My(H)=Clg Velt) (6)
where
Clg=B(gVAg™ (7

It will be assumed that C(g~?!) is a polynomial
degree L(L>2m) given by

Clg ) =cotcig'+crqg™* (8)

The problem is to determine the number of multi-
ple sinusoids from the matrices using the available
data y(1), ¥(2),---v(N),

The number of multiple sinusoids are usually
obtained from the following procedure:

(i)  Construct a data[13] covariance[9]or

[10] Gramian matrix[11],
(6).

(ii) Perform the singular value decomposition
(SVD) on the matrices.

(iii) Find the number of multiple sinusoids from
the low effective rank of the matrices that
is reconstructed using SVD.

Specially in the model reduction(MR) method,
the first step is to find the reachability and obser-
vability Gramians[11], The number of multiple
sinusoids is determined from the singular values

using (5)or

through the square roots of the multiplication of
two Gramians.

3. A Singular value approach(Per)
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First consider a covariance matrix determining
of the number of multiple sinusoids from N noisy
data. Then Akaike’s information criterion(AIC)

[1][2] and Rissanen’s shortest data description
(MDL)[3][5] using the covariance matrix of
dimension pXp is discussed.

AIC(n) and MDL (n) were given by the follows.

i ] ol o mn
AIC(n)= -210g<"1¢7—~~>
b— 7 §+lo—{
+2n(2p--n) (9)
d
MDL () = —log(~*=: ,,f)
p—nifmnt
+ 1/ 2n(2p—n)logN (10)

Where g; is the i-th singular values of matrix and
» is the possible number of complex sinusoids, or
twice the number of real sinusoids. The correct
number of » should be chosen as the one which
makes AIC (%) or MDL (%) each its minimum. It is
interisting to note that the term in the parenthesis
of (9) and (10) is the ratio of geometric mean of
noise singular values to the arithmatic mean.

Next a singular value approach (Per) is present-
ed and investigated analytically to determine the
number of multiple sinusoids. It is known in the
noiseless case that data, covariance or Gramian
matices[10] are of rank 2m, again m being the
number of multiple sinusoids. In such case, these
matrices have 2m non-zero(greater than zero)
signal singular values. In nosiy data case, all the
singular values will be non-zero, but the signal
singular values are usually much greater than the
noise singular values. This information is much
valuable when determining the number of multiple
sinusoids. Decisions can be made, for example, by
inspecting the “gaps” between two succesive sin-
gular values. Here we will examine the singular
values by observing how “close” a low rank
matrix is to the originally full rank matrix. To do
this, we will introduce the concept of low “effec-
tive rank"[8][4].

Let R be a data, covariance or Gramian matrix
of dimension MxL, which contains the information
about the sinusoids-in-noise process, in order to
define a singular value approach to determine the
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number of multiple sinusoids from the nosiy data.
Perform a SVD for the matrix R[12]

R=UZVT (11)
where

U:(Ztl, Uz, **7, uM) (12)

V=_(v1, vs 1, v1) (13)

Jdiaglo, 02 1, 04}, g=min{M, L) (14)

The diagonal elements g, are commonly refer-
red to as the singular values of matrixR, U/ and V
are the eigenvector matrices of RR? and R'R,
repectively. It is well known that the nonzero
singular values will correspond to the positive
square roots of the eigenvalues of the nonnegative
Hermitian matrices RRT and R'R.

The singular values g; convey the signal and
noise informations concerning the rank characteri-
zation of matrix R. This is readily demonstrated
upon considering the problem of finding that M x
[ matrix of rank » which will best approximate R

in the Frobenious norm sense (this assumes that n
<rank[R]).

The Frobenious norm of the M X L matrix differ-
ence R-S is defined to be

M L 1z
IR-Sl=| £ Zlrusuf] (15)
where 7,; and s;; are elements of matrices R and
S.

We now seek to find that M XL matrix § of
rank ., which will render this criterion a minimum.
The solution to this approximation problem is
gotten from the follows. Namely, the unique M X
L matrix of rank < rank[R] which best
approximates the M XL matrix R in the
Frobenious norm sense is given by[12]

S=R"=UZ,V" (16)

where U and V are as in (11) while X, is
obtained from X} by setting to zero all but its »
signal singular values.
The quality of this optimum approximation is
given by
n

2
IR- R™I=[ B(at—at)+ 2 (ci—0)]

J=

q 1/2
:[ 2 ij] , 0<n<g a7

i=n+1

where R is all singular values and R" is only the
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signal singular values.
The degree to which R™ approximates R is
seen to be dependent on the sum of the(g—#»)

for determination of the number of multiple
sinusoids of a sinusoids-in-noise process, using
covariance matrices for MUSIC[10] and HOYW
il bttt R L D 2 i Gdenicaiioiai

Ei?‘ i 1 1 g A 1

this sum will become progressively smaller and
will eventually go to zero at n=g¢q. In order to
provide a convenient measure for this behavior
which does not depend on the size of matrix R,
define the normalized square norm in Frobenious
norm sense as

(n)z 20’:2
Per(n) *"R lll =+ . (18)
?_;]O'i
where
R™= 3,0l (19)

Obviously Per () is a nondecreasing function of
n. Since matrix R in our case is generally of full
rank, Per (»#) will monotonically increasing to one
as »n approaches min(M, L). [R™)% is the sum of
the signal singular values and | R||% is the sum of all
the singular values. Because the signal singular
values of R are much larger than the noise sin-
gular values, Per(x), namely, the ratio signal
singular values to all singular values, is close to
one for some small number of .

The low effective rank of R is then defined as
the number which is much smaller than min (M, L)
and which makes Per(#) very close to one. Any
larger number than this low effective rank makes
no significant contribution to Per ().

In the section IV two examples are given to
demonstrate how the low effective rank should be
chosen and how the design parameters affect Per

matrix for MR[11]. In all the examples, the sig-
nal was assumed to consist of two sinusoids. The
SVD has been performed for different matrices
and different design parameters like the order L of
filter, the number M of equation and the number n
of multiple sinusoids. The P is (L+1),

Example 1, The data simulated is given by

y(t)=v2sin(0.7226¢) + v 2sin (1.367¢) +e(2)
(20)

where ¢(t) is a white Gaussian process with zero
mean and variance A?=0.1 and the amplitude is o,
=J/2for i=1, 2,

The data length is N =64 and the SNR is 10 dB,
i. e, SNR,=10logio(@?/ 24?) for i=1, 2, AIC(n),
MDL (#) and Per(x) are calculated with a num-

Table 1 Performances of AIC(n) for MUSIC,

Example 1
P n 2 4 6 8
12 1972.8 383.4 300.0 285.5
16 3899.5 911.1 705.7 677.2
20 4945 .4 810.0 705.4 670.5
24 6096.0 1346.3 1301.8 1277.6

Table 2 Performance of MDL (n) for MUSIC,

Example 1
P oo | 2 4 6 8
12 1033.9 278.1 266.6 280.9
10 ONYA 7 E7e © o1 9 FAD O
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Table 4 Performances of Per(n) for for FBLP, Table 9 Performances of Per{(n) for MR,
Example 1 Example 2
L n 2 4 6 8 L n 2 4 6 8
12 0.8665 0.9997  0.9998 0.9999 12 . 0.9517 0.9929  0.9986  0.9999
14 0.6768 0.9991 0.9997  0.9998 16 0.9966 0.9998 0.9999  0.9999
20 0.5878 0.9988  0.9994 0.9998 20 0.9974 0.9991 0.9997  0.9998
24 0.6148 0.9981 0.9992 0.9996 24 0.9386 0.9906  0.9964 0.9989
Table 5 Performances of Per(n) for HOYW Table 10 Performances of Per(n) for FBLP,
(L=12), Example 1 Example 2
M n 2 4 6 8 L n 2 4 6 8
12 0.7251 0.9999 1.0000 1.0000 12 0.8260 0.9767  0.9878 0.9944
14 0.7431 0.9999 1.0000 1.0000 16 0.6614 0.9706  0.9824 0.9901
16 0.7646  0.9999 1.0000 1.0000 20 0.5695 0.9717  0.9804 0.9877
18 0.7613  0.9998 1.0000 1.0000 24 0.5842 0.9708 0.9798 0.9858
Table 6 Performances of Per(n) for MUSIC, Table 11 Performances of Per(n) for HOYW
Example 1 (L=12), Example 2
L n 2 4 6 8 M n 2 4 6 8
12 0.8805 0.9994 0.9998 0.9999 12 0.7056  0.9944 0.9974 0.9941
16 0.6820 0.9992 0.9998 0.9999 14 0.7187 0.9931 0.9973  0.9989
20 0.5688  0.9993  0.9997  0.9998 16 0.7402  0.9926  0.9974  0.9990
24 0.6789 0.9993  0.9996  0.9998 18 0.7436 0.9916  0.9975 0.9990
Table 7 Performances of AIC(n) for MUSIC, Table 12 Performances of Per(n) for MUSIC,
Example 2 Example 2
P n 2 4 6 8 L n 2 4 6 8
12 498.4 240.7 253.8 280.2 12 0.8434  0.9751 0.9881 0.9941
16 1144.3 450.7 484.9 479.3 16 0.6680 9.9719  0.9824 0.9914
20 1938.1 758.7 811.5 821.5 20 0.5522 0.9741 0.9819  0.9891
24 2790.1 1445 .4 1495.6 1533.7 24 0.6444 0.9761 0.9833 0.9887
Table 8 Performances of MDL (n) for MUSIC, Example 2,
Example 2 The same signal as the example 1 has been
used but the SNR has been changed to 0 dB.
P n 2 4 6 8 Computations are repeated as done in example 1,
12 296.7 206.7 243.5 278.3 and performance are listed in Table 7 through 12,
16 636.9 346.2 410.8 446.9 From the above tables, AIC and MDL methods
20 1051.1 534.8 626.0 687.1 chose the number of », when AIC(#) and MDL (%)
24 1494 .4 912.7 1019.8  1112.3 decrease steeply and Per method choses the num-

ber of n, when Per(#) is close to one.
ber of values of x. Results are given in table 1 The following comments are drawn from the
through 6 above two examples:
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(i) The AIC(xn) and MDL (%) for MUSIC tend
to overestimate the number of multiple sinusoids
at relatively high SNR. However, MDL (%) may
provide correct results for large design parame-
ters. For low SNR, both AIC(#%) and MDL (%) give
consistent results. This may be argued from the
following observations. At high SNR, the noise
singular values diverse very much (the ratio of the
largest noise singular value to the smallest one is
small), The ratio of the geometric mean to the
arithmatic mean is small (note it is less than one),
and the first term in {9) and (10) will be very
large. Therefore the second term, i.e. the penalty
term due to parsimony principle, does not play
important role in correction of overestimation.
For low SNR, the noise singular values are closer
to each other. The first term in (9) and (10)
decreases, and the second term can give proper
penalty for overestimating the number of signal
(note also the second term of (9) and (10) is
constant with respect to SNR),

(ii) The test of Per(s) for MR method gives
satisfactory estimates at high SNR, but unsatis-
factory estimates at low SNR. The reason for the
latter case may be explained as follows. At low
SNR, ie. heavy noise, the dominant poles(or
modes) may be located out of the unit circle. In
this case, the high order model will be unstable,
and the reachability and observability Gramians
will not converge. Therefore reachability and
observability Gramians obtained from Lyapunov
equation will give false information.

(iii) The tests of Per () for FBLP, HOYW and
MUSIC methods show that the low effective rank
is 4, in both example, which means that there are
two sinusoids in the measurement data. But for
small design parameters, the low effective rank
may sometimes underestimate the number of
multiple sinusoids. This can be explained by obser-
vations on the singular values. For small design
parameters and two equal SNR’s(SNR1=SNR2),
the first two signal singular values are much
greater than the other two. These small two signal
singular values grow very fast (faster than the first
two) with the increase of design parameters. Thus
the first two signal singular values become less
dominant. On the other hand, if the design parame-
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ters are too large, the signal singular values may
become less dominant since there are too many
noise singular values in this case. Finally the value
of the SNR also affects the dominancy of the
signal singular values.

5. Conclusions.

In the paper, a singular value approach (Per)
that determined the number of multiple sinusoids
from the finite noisy data was presented.

Simulations were conducted for AIC (%), MDL
() and Per(x) in MUSIC, HOYW, FBLP and
MR methods.

The following conclusions are drawn:

(i) The AIC(#n) and MDL (%) for MUSIC tend to
overestimate the number of multiple sinusoids at
relatively high SNR. However, MDL (%) may
provide correct results for large design parame-
ters. For low SNR, both AIC(#) and MDL (%) give
consistent results.

(ii) The test of Per(x) for MR method gives
satisfactory estimates at high SNR, but fails at
low SNR.

(iii) The tests of Per(n) for FBLP, HOYW and
MUSIC show that the low effective rank is 4. But
for small design parameters, the low effective
rank may sometimes underestimate the number of
multiple sinusoids.

Finally, Per will need to estimate the fre-
quencies of multiple sinusoids from the noisy
measurements. Furthermore, this approach will be
applied to the digital signal processing of commu-
nication and bio-medical engineering.
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