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Abstract- The decoupling problem has a great practical importance in that it simplifies
greatly the control of a given system by reducing the multi-input multi-output systems. In
this paper, we derive the necessary and sufficient conditions for decoupling 2-D F-MM II
via state feedback. For the general case, the problem of determining the feedback matrix F
involves the solution of nonlinear algebraic equations. Under certain conditions, however, it
is shown that an explicit formula for F may be derived. In comparsion with the method for
RM, it appears that this method for F-MM II is more general and the algorithm is simpler.

1. Introduction

sonar array processing etc.
recent years the area of two-dimensional

weather prediction, seismic analysis, radar and

(2-D) systems has attracted considerable atten-
tion. This area has been studied in relation to
several modern engineering fields such as 2-D
processing, X-ray enhancement, image deblurring,
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On the other hand, the decoupling problem has
great practical importance, since it makes it pos-
sible to simplify the control of the given Systems
as it reduces the multi-input multi-output Systems
under control to a number of single-input single-
output. This motivation has led to a great deal of
research into the decoupling of one dimensional
systems[1][2][3][4][5]and it has been extended
to 2-D Systems(6][7][8]in similar way for 1-D
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systems | But all of these approaches for 2-D
systems deal with Rosser’s Model (RM) (9],

This paper refers to the problem of designing a
state feedback controller for decoupling of 2-D
Fornasini-Marcheini’s 2nd Model (F-MM 1) {10]
Although the algorithm in this paper is similar to
reference [6] and [7], the advantage of this
paper is that F-MM | is the general from
which can be converted into RM and the algorithm
is simpler than the case of RM.

2. Definitions and Statement of the Ploblem

Consider the linear time-invariant multivariable
discrete-time 2-D Systems in F-MM [ [10]de-
scribed in statespace as follows:

x(i+1, j+1)=A1x(i, ].+1)+A2x(l'+1, J)
+Buli, j+1)+B:u(i+l, j)
(1a)
v, H=Cx(i, 5 (16)

where i, j are integer-valued vertical and hori-
zontal coordinates, respectively,

x(i, 7)ER™ is the local state vector at (i,
7

u(i, 7)€ R™ is the input vector,

u(i, 7)ER™ is the output vector,

A\, A, B, B,, C are real matrices of appropri-
ate dimensions. It is assumed that m< #.

The controller applied to systems(1)is of the
linear state feedback type having the form

uli, j)=Fx(i, j)+Goli, j) (2)

where F is an m X n constant matrix, ¢ is an
mXm nonsingular matrix and pE R, is the new
control input. Substituting (2) into (1)yieds the
closed-loop system,

x(i+j, 7+D=AA+BF)x(i, j+1+
(Az+BzF)x(l+1 ]>+Ble(l, J+1)+Bva
(i+1, 7). (3)
The following defintions will be applied in the
sequel: The state transition matrix of systme(1)is
A" and is defined as follows[10]
A% =T (the identity matrix) (4a)
Ax.j:AlAi—»lj+A2Ai,j
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for(i, 7) >(0, 0) (46)
A=A’ ~/=((the zero matrix)

for i>0 or 7>0 (4¢)
AL ATV A AV = AT A AV,
for(i, 7)=(0, 0) (4d)

The following partial ordering is used for inte-
ger pairs:

(h, k)<(i, 7)if h<i and k<j (5a)
(h, ©)=(i, j)if h=i and k=7, (58)
(h, K)<(i, iflh, H=<(, 7)
and (h, &) *(i, j), (5¢)
(hy, ©)>(i, Dif(h, k)=, 7)
and (h, k)*(i, 7). (5d)

Considering x(i—1, j)=x'(i,j-1) =0 for ¢,
7i=0, vo(i, j—D=v(i—-1, j)=0fori, j=*0,
eq.(3) may be written as follows:

x(i, J+1) = (Az+BzF)x(i, ])

+B:Gv(i, 7) (6a)
x(i+1, H=(A+BF)x(i, j)
+B.Gv(i, ) (68)

Using (6) recursively, the output eq. (1b)may be
written as follows:

y(z, H=Cx{i, 7) (7a)
yli+1l, /)=C(A+BF)“x(i, j)
+CB:Guv(i, j) (78)
yli, 7+1)=C(A+BF)*x(i, j)
+ CB:Gvli, j7) (7¢)

yli+2, ;) =C{A+BF)*x(i, /)
+C(A+BF)"B.Gvli, j)
+CB.Gv(i +1,7) (7d)
y(i+1l, j+1)=C(A+BF)"x(i, j)
+C{(A+BF)""B,+ (4
+ BF ) *RB.}Guvli, )+
CB.Guv(i+ 1, j)+CB:Gv
(i, 7+1
(7e)
yli, i+2)=C(A+BF)** x(i, j)+C(A+
BF)*'B:Gv(i, j) +CB.Gvli,
7) +CB:Go(i, j+1) f)
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yli+tn, j+n)=C(A+BF)™" x(i, j)+C[(A+BF)" “"B,+ (A+BF)"" 'B,]Gv(i, j)+

C[{A+BF)" " 'B 4+ (A+BF)™" B, Gv(i, j+1)+
C[(A+BF)" *"Bi+ (A+BF)" " "'B,| Gv(i+1, j)+

+Cl{A+BF)"* "B+ (A+ BF)" " " 'B,] Guvli+p, j+y)+-

+CB'Gu(i+n—1, j+n) +CB:Gv(i+nj+n—1) (79)
where the identifier(A+ BF)"*=(A,+B\F) where LY(F,@)(or simply[,%)and Qarer X m
and (A+BF)*% = (A.,+ B.F)are used. and m X r matrices, with r=(n+1)(n+1)—1=
The closed-loop characteristic polynomial P n®+2n, defined as follows:
(z1, z2)is given by C Li

P(Z], 22)=det[lnz| 22_(A1+31F>Zz_ ‘11'0
(A2+BzF)Zx]: .

BRNPL(Fzizh PuaF)=1. )

L= LZ;,v
The 2-D Cayley-Hamilton theorm[9]is given
by
n a L, .
igo,gopi’j(A-f_BF) w=0. (9) | L%y ]

Now, if we multiply both sides of (7a)by Py, o, of
(7Tb)by Pio, -, and of(7g)by P,.. and if we add where
all equations and making use of (9), we get

ylitnjtn)+Peany(i+tn—1j+n) +Ponylitn j+un—1)++Poylit+k j+1)+--

Pooy(i+1, j)+Poyli, 7+1)+Pooy(ij)=
n-1tn n n-1
ClUZ B PiBiGoli+h 4D+ 3 8 PuunBoGulith, j+1)+

S S e i ((A+BF)Bit (A+ BF)™ Bo)Goli+, j+1)++
352 Pron- mirn-o{ (A+ BE)™* B, 4 (A4 BE)" " B} Goli+k, j+ 1)+ +
{(A+BF)" "B, + (A+BF)""*'B.}Gv(i, j)

Consider the gth output y,. Then(10)may be written compactly as follows:

EOZ%P'” woli+k, =t [LF, ) L]:.q=1, 2, -, m.

Lo%0=Co[PraBi+ PoaBet++ Pui((A+ BF)* "B, + (A+ BF)** ' B} + ---
+(A+BF)"""B,+ (A+BF)""'B,] G

L\ =Co[PyBi+ P By +-- + P, {((A+BF)* "B, + (A+ BF)* By} + -
+(A+BF)"*"Bi+ (A+BF)" " 'B,1¢

Lo®s=Co[PriBi+ PozBot -+ Peyoi {(A+ BF) B\ + (A+ BF) ' B,) + ---
+(A+BF)* """ 'B,+ (A+BF)""B,] G

L., = CG[PU+1.yBl+P/-I.u+le+"'
+ Puskv-t{{A+BF)* "B+ (A+ BF)“''B,] +--
+(A+BF)" "', "B+ (A+BF)"*"1B,1G

an—l.n: Cqu(;

an,n—l:—' CquG

AEIAI ROl 2fph 2XHH F-MM T2 HiZH &

+

(10)

(11)

(12a)
(128)
(12¢)
(12d)
(12e)
12/)
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and

Q=[vli, 7/, vii+l, 7, (i, j+1),-,
v(itp V), vlitn—1, j+n),
viitn, j+n—1)] (13)

Let E;; denote the m X m matrix with | as 5
th entry and zeros elsewhere. Then E; ;Qis an m x
m matrix with the jth row identical to the jth row
of Qand all other rows zero. The matrix Eg, 2
will be denoted by Q9. Then precise definition of
the decoupling problem may now be stated as

follows:The matrices Fand &, with G nonsin-
gular, decouple system (1)if

SN Pupali+h, j+D=UILUF, 6)€]

=tr[LY(F, &)Q7]
(140)
and if

tr[LY(F, ¢)Q]*0, q=1, 2, , m. (148)

3. Main Results

(Definition 1)

For each output g, let I',denote the set of all
points(y,, vg)for which the following relation-
ship hold:

ClA B+ A% 'RB,]
{ 0, Vs, )=(nq vo<(n, n) (150
=0, Vs, §)<{pq, vo)<(n, n) (158)

And let (7, P, denote the points of I, which
is the nearest to the i-axis and(j,, ¥,)denote the
nearest point to the j-axis. Then, one may define a
set points(s, ¢)for which the follwing lelationship
holds:

C A VB +A45'B,]=0 (15¢)

Vs, £ (Fa+1,00<(s, )<(n, 1),

(0, Ja+1=(s, =< (H—1, n)

(Defintion 2)

For each output g, let /7, donote the set of all
points (s, ¢)for which the relationship(154)and
(15¢)hold.

(Definition 3)

For each output ¢, let d.denote the set of
vectors

B*o=Co[ A" B+ A" B;) (16)
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for all points of I,.

{Theorem 1]

The decoupling problem has a solution if and
only if

(i) all rows B.*in 4, are proportional,

(i) det B**0

where
r B r —Ly ArLvi—1 9
. C. (A" "B+ A*MT' B, ]
d
B'=| .| =| Gl Birar B |y
q
L L calarmBy+ g By

(iii) there is an F such that

C.[{A+BF)*"“'B,+ (A+ BF)>"'B,]
:Kq(S, t)B*q (18)

for g=1, 2,--, mand for all (s, )< (n, n)
which do not belong to Tyand I';. The factor K,
(s, t)is a proportionality constant.

(Proof)

(Necessary conditions)Suppose that there is a
pair of matrices Fand Gwhich decouple(l),

Thenit follows from(12d) and the defintion 1that
for any point(u,, v, that belongs to the set I,
the row L% _uqn-v, reduces to its last 2 terms, i.e.

L% pon-ve=Cql (A+BF)* B,
+<A+BF)I‘¢,U7—1Bz]G (19)

Using the identity

(P+Q)" =P pPi-tiQuoq pis-ty Q... 4
Q" 20

where P and @ are square matrices and defin-
tion 1, relation(19) becomes

Lo pin-ve=Cy[ (A+BF)** "B,
+(4+BF)"*"B;]G
— Cq[{qu-l,uq+ A,uqu.w(BF) 1,0

+ At v (BEYS 4o 4 (BF)
l‘q—l.Uu}Bl

+{aroramh g gra vl (BF) Y

+ AP 2(BF)* +---+ (BF)
”q'w-l}Bz] G
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=C[A* "B+ A" ' B, ] G
(21)

Now if

C.lA B+ A" 'B;]
=0, for all(s, t)<(n, =)

that would imply that tr[L%(F, G)Q2]=0,
which, according to(14), would contradict the
fact that F and G decouple(1). Hencse, it is
clear that By +0 for ¢g=1,2, -, m. As G is non-
singular, B G +0 for all g. Since(144) is satis-
fied it follows that By G =aqeq, With go+0 and
eq=1(0,0,---,0,1,0---0) with the unity element in
the gth position. Hence, for each row By, which
belongs to the set A,, it must hold that
B;G=B:lgi, gi. -, gn]
:[0, 0, -+, aq,"-,O] (22)

that is B} (g.)7=0,i=1,-~,¢—1,¢+1,, m,
where glis the i th column of G. Consequently all
B; that belongs to A .are orthogonal to the m-1
independent vectors g;, i =1,---,¢g—1, -, m and
hence all B¢ that belong to A are proportional to
each other. This last property can be expressed as
in relation(23)that follows

To this end we let(g,, v, denote a certain
point of the set [,. For this point the corre-
sponding vector B? will be denoted as B#, that is

Then, if all vectors B; of the set A, are pro-
portional to each other then the following rela
tionship must hold

; — Cq[Auq—l.qul +Al£q.w4132]
=Ag(pta, va) E; (23)

for all (uq, o) of the set I, where A,{(pq, vq) iS
a proportionality constant that can readily be
computed.

From (22) we have that

a 0 - 0
O m
B'G: 0 az N ql;_[laq:’:o.
0 0 « am

Since G is assumed nonsigular it follows that
B* is also nonsingular. Here, the second require-
ment of the theorem is satisfied. To prove the last

Atefd ol 28t 2N F-MMIIS) u|2ha 8t

requirement of the theorem, we introduce the
following definitions : Let @Q9(F)be the rXm
matrix given by

Cl(A+BF)" *"B,+ (A+BF)""'B,] ]

C;[(A+BF)"""'B,+(A+BF)* t‘le]
QF)= :
Col(A+BF)*s "B + (A+ BF)*B,]

0

Also let P2(F)be the X r matrix given bv

1 anl.n Pn,n—l Pn—l.n—l Pk,L PI‘q-Ua .
1 Prosn Pany Prirg - Pﬂw+1.l/¢ 0
PQ(F): 1 Pn—l,n Pk.l+l P;‘q,wﬂ
0 . . B
. 0 ’
I

Since det PY(F)=1, it follows that the rank
of PU(F) @Q‘(F)is the same as the rank of
Q?(F).The matrix L*(F, G)defined in (11)may
now be written as

LYF,G)=P(F)Q'F)G (24)
Hence
rank L(F,G)=rank Q7(F) (25)

Since @ is arbitrary, we conclude from (14)that
the ¢th coulmn of L7(F,G)is a nonzero vector,
while every other column of LY(F, G)is ia zero
vector. It follows that L?(F,G)has rank one and
hence, by (25), that rank Q?(F)=1, Now since
at least one row of @?(F)is identical to B*,, it
follows that for @?(F)to have nuity rank. all its
rows must be analogous to B], This leads
directly to the last condition of the theorem.

(Sufficient conditions), Let all conditions of
the theorem hold, i.e. let(23) hold, det B*+0
and rank QY(F) =1,

Then Q7(F)takes on the form
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- Ko(n, n) By
Kq(s‘ t)Bq
4 *
QY F)=
B;
o
If we post-multiply Q7(F)by (B*)~' we have
Kq(n, n) )
ey |0 Kols, 8
Q(F)(B*)'= ) 0
1
0

Thus for G=(B*)' we have

tr[L[F, (B*) ']Q]
=tr[P*(F)Q°(F) (B*)'2]
=tr[PYFYQ'(F)(B*) Q] *0
Since relations(14) are satisfied it follows that
the pair F and (B*)' decouples(1),

4. Special cases

In section 3, the third condition i.e rank Q<
(F)=1 is a set of non-linear algebraic equations
in the elements of F. Therefore, it is difficult to
use this condition to derive the feedback controller
matrix F. Under certain special conditios, how-
ever, an explicit expression for F can be derived.
To this end let(aq, B, and (&, 3,) be the pairs
of integers defined by

(@g, Bqa)=min{(s, ¢) & C.A* "B,

00, O<(s, H<(n, n)} (26a)
((Yq, B_q):min{(s, t) Cqu,tAle
0.0, 0O<(s, )< (n, n)} (26b)

where by minimum over the set (s, ¢) we refer to
the minimum order p of the pair (s, {)which is
defined by p=s+t, The pair(a,, Bs)is assumed
here to be unique in the sense that, if a pair (a4, 8q)
is found such that C,A4% "% B,#(, then all other
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vectors C,A5 VB, for which s+¢t=¢a," 8, are
zero. Similary for the pair (&, o). From (26),
it immediately follows that

if
gt Ba< dot Bq
then
CoA® " B:=0, for(0, 0)<(s,#)<(aq, B}
(27a)
and if
dqt B_q< gt Bq
then
C.AS " B,=0, for(0,0)<(s,t)<(dq Ba)}
(278)

[Theorem 2]

The system(1) cna be decoupled via the state
feedback laww of eq.(2)if the m X m matrix B*,
where its gth row B¢ is given by

B :CqAaq_{'ﬂqu if @g+fe<ast+B. (28a)
? :CqAap'@q‘l Bzifaq+gq<aq+3q (285)

is nonsigular and if the following conditions are
satisfied. If @;+8,< @q,+ B4, then

Ci AW =0i{+7]
=aq+B.+1 execpt for(s, j)
=(aqt+1, B (29a)
and if @,+ Bs<a¢+Bq then
Ce A ' =0i+5
=@q+ A¢+1 except for (i, j)
=(a& Bst1) (295)
(Proof)
Assume that B*is nonsigular. Then choose
G«___ (B~:)—1 (30)
and
F*=—(B*)"4* (31)

where the ¢ th row A% of the martix A* is
given by

42 = CA™ if @t Ba< ot B (32a)
N=CeAd®F if Got+ Bo<aetBq (320)

If @4+ B¢< &g+ B, then
C.,(A+BF)* B,
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=0(0,0) < (s, t) < (aq Bq) (33a)

=0(s+1)=aq+hq
except for (s, £) = (aq, Bq) (335)
=Bi(s, t)=(aq B (33¢)
=0(s, 1) > (@ Ba) (33d)
)

C.,(A+BF)**“'B,=0(s, ¢) =2(0,0) (33e
and if @,+ B,< @+ fBs then
C,(A+BF)*" "B,

=0{0,0) < (s, t) < (&g, Bq) (34a)
=0(s+1¢)=aq¢+ B4

except for (s, ¢) = (&4, Bq) (344)
:B~;(S, t):(d—lh )8-0) (346‘)
=0(s, $) > (@q, Ba) (34d)

C.(A+BF)* "B,=0(s, t) =2(0,0) (34e)
To p rove eqs.(33), using eq.(20)

C.{A+BF)* "B,
— Cq [As—l,t,{_As-z,z(BF) 1,0
+ AN (BF) 1B
= Cq[AsAl,t+Asfz,tBlF
+ASTVIBF 4+ 1By (35)

where the identities (BF)*= B, Fand (BF)®*'=
B.F are used. For(s, ¢) < (aq, B¢)and according
to (26¢), all terms in the right-hand side of (35)
become zero. Thus(33¢g)is established. For s+¢=
aq+ B, and according to (264), all terms in the
right-hand side of (35)become zero, except for the
case where (s, {) = (aq, A¢), 1In which case
Ci(A+BF)* “'Bi=C,A*""*B,=B} (36)
and thus egs.(33b)and (33¢)are established. For
(s, t) > (aq Bg), Wwe have: Let s+t=a,+8,+1.
Then, according to (26q)and (294) all terms in the

right-hand side of (35)become zero, except for the
case where(s, ¢t) = (@s+1,8,)in which case

C.(A+BF)** B,
= Cq[Aﬂq.ﬁvBlF] Bl (37)
Introducing (28¢)and (31), the second term in
above eq. become
CqA” 'l’th[‘“ (E:) klA‘]B]
= —E; (B“j *1A*Bl = —A*qu = — CqAaq,ﬂqu
(38)

In relation(37) and (36), eq(334)is established.
For s+t=a.+A,+2, using(4s), we have:

ANl 28t 2x3 F-MM Q) HiZHI g

C.(A+BF)* "B,
=Cq[(A+BF)* > (Ad+BF)""
+(A+BF)*""""'"(A+ BF)"'] B, (39

In the above eq, the terms C,(4+ BF)*-%! and
C.(A+BF)* "1 are both zero.

This is due to the fact that, since the indices (s —
2,t)and (s—1,/~1)are of order(s+¢)—2=a,+
Bq, 1t follows from the previous case. Continuing
in this manner, eq.(33¢) may be established for
all(s, t) > (aq, Ba) Equation (33e)readily results
from the procedures used to prove egs.(332)
- (33d)and by making use of (26s), Finally, egs.
(34a)-(34e)may be proved analogously to egs.
(33a)-(33e).

Thus the proof of the theorem 2 has been com-
pleted.

5. Illustrative Examples

(Example 1)
A system is described as in(1), with

[0 0 o 1 0 0
A=l 1 -1 1], do=| 1 -1

|0 0 -1 11

[0 0 1 0
B.=10,Bz—01,0:[100}

[0 1 0 1 011

Checking the conditions of theorem 2, we
have:First output:g=1

(e, B)=01, 0)=>C.B:=(0, 0)

(0"1, BI)Z(O, 1)@0132:(1, 0)

Hence ((?1, /STI) - <Ov l)and Br: ClAi"f‘le:
1, o
Second output | g=2

{az, B)=(1, 0)=C.B,=(1, 1)
(@2 B2)=1(0, 1)>C:B:=(0, 0)

Hence (@, ) =(1,0)and B,*= C,A% “*:B, =
(1, 1
Thus the matrix B* will be

- B! 10 N
= 2 = here, | B*|+
B [B;‘] [1 J, ere, | B*|=+0

Examing the rest of the conditions of theorem 2,
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we have:
g=1
ClALo:(Oy 01 0)’ Clerlz(l, Oa 0)
q=2
C.AY=(1 —3, 0), C.A"=(0, 0, 0)

Thus the condition of theorem 2 is all satis-

fied. Therefore the matrix A* will be
A,

. C}Am.ﬂ—x 1 0 0
A*=]| 4 = CZA'IWQZ = 1 -3 0
Az

Hence the given system is decouplable, with
~ 1 0
*=(B*)'= and F*
G*=(B*) [ a1 1]

Nl gk -1 0 0
— (8" A-[ Lo O]

Checking, we have

00 0
A+BF*=| 0 -3 1},
0 3 -1
0 0 0
Az‘{'BzF.: 1 —4 1
-1 4 -1

[InZ1ZZ_ (A1+B1F‘> 22— (Az‘f’BzF‘) Z]]

2122 0 0
=| —z, z1 Z2+4z2:+32: — (21t 22)
21 —(4ZJ+322) 2122t 21122

H(Zl, Zz) :C[InZIZz - (Arf-BJ’“)Zz_
(A:+ B:F*) 2] (B.z:+ B:2)) G*

_ 1] #fz(zi12:1+521+422)
== .
bsartan)
21222(2122+5Z1+4Zz) ’
A =zPz3(z212:+52:T422)

[Example 2]

10 0 0 0
A= -3 1}, A= 0 s
6 0 -1 —~1
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00 00 L0 o
B,=]10 ,Bz= 00], C=|: 0 0 1]
00 01

Checking the conditions of therem 2, we have.
a=1,
1, 0) C.B:=(0, 0)
0, 1) C.:B.=(0, 0)
1, 1) C.4A%B,=(0, 0) C.A*B:=(0, 0)
(2, 0)CiAB,=(1, 0)
(09 2) Cle’lBlz(Oa 0)

Hence (@, £,)=(2, 0)and B}=C,4*"""B,=
1, 0
a=2, '
1, 0) C:B,=(0, 0)
(0, 1) Csz:(O, 0)

ence(d,, B2) = (0,1)and B: = C, 4% B,=
(0, 1
Thus the matrix B* will be

- [ B“] _Jt1o0
B'[E*z]_[o 1]’
here, | B*| =0

Examing the rest of the conditions, we have:

a=1 C.A*=(1, -3, 1)
CiAM'=(0, 0, 0)
C.A%=(0, 0, 0)
g=2 C:AY=(0, 0, 0)
C.A»=(-1, 0, -1)
Thus the condition(29)is satisfied. Therefore
the matrix 4* will be

. [ A*l] [ C. A" ] [ 1 -3 1]
A= = ~ =
A*, sz‘l‘”'ﬂ_z -1 0 -1
Hence the given system is decouplable, with

G'Z(B~‘)“=[ ; (1)] and

Ft:_(ﬁt)-—lAt:[ =13 —1]
10 1

Checking, we have

H(z, Z2) = C[L:ZlZz_ (A1+B,F*)z,
- (Az+BzF‘)21]—l (Bsz+ BZZI) G*
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The system of example 2 is equivalent to the
following RM:

0 1 0
4= 1 -3 1],
-1 0 -1
0 0
B=|1 0],
01
100
C'[001]

In this case, G*and F* are equal to F-MM II
except the following transfer function.

H(z,, 2.)=Clzl—A—BF]'BG

1
— 0
2i }
0

1
Z2

6. Conclusions

The problem of decoupling 2-D F-MM [
using state variable feedback has been considered.
The necessary and sufficient conditions for decou-
pling are established. For the general case, the
problem of determining the feedback matrix F
involves the solution of a non-linear system of
algebraic equations. Uneder certain conditions,
however, it is shown that an explicit formular for
F may be derived. In comparision with the method
for RM, it appears that this method for F-MM 1 is
more general and algorithm is simpler. But the
problem for excluding non-liner equations in gen-
eral case is required for future research.
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