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NEARLY SASAKIAN MANIFOLDS WITH
VANISHING CONTACT CONFORMAL
CURVATURE TENSOR FIELD
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1. Introduction

The notion of a nearly Sasakian structure was introduced by D.E.
Blair, D.K. Showers and K. Yano in their paper [1]. They also showed
([1]) that S® properly imbedded in S° inherits a nearly Sasakian structure
which is not Sasakian.

Z. Olszak ([4]) studied nearly Sasakian manifolds whose curvature
tensor satisfies Cartan’s condition, conformally flat nearly Sasakian man-
ifolds and those of constant ¢—sectional curvature, and also proved that if
they are not Sasakian, they are 5-dimensional and of constant curvature.

In this paper, we study nearly Sasakian manifolds with vanishing
contact conformal curvature tensor field and prove the following theorem

Theorem. Any m(# 5)-dimensional nearly Sasakian manifold with van-
ishing contact conformal curvature tensor field is always Sasakian.

Throughout this paper, manifolds are assumed to be connected and
of class C*°, and all tensor fields are of class C*.

2. Nearly Sasakian manifolds

A (2n + 1)-dimensional manifold M?**! is said to have an almost
contact structure with an associated Riemannian metric tensor g;; if there
exist on M?**+! a tensor field ¢;' of type (1.1), a unit vector field ¢* and
its dual 1-form 7; with respect to g;; which satisfy ([6])

(2.1) b;hon' = —5; + 0, dn€" = 0,850 g0 = 95 — nimis
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where here and in the sequel the indices a,b,c, -+, h,1,7,k, - run over
the range {1,2,--+,2n + 1} and the Einstein summation convention will
be used. It is clear that the tensor field ¢;; = ¢jhgh|' is skew-symmetric.

Such a manifold M?"*! is said to be nearly Sasakian if it satisfies

(1))
(2.2) Vidji + Vo = =2gkini + grinj + 95iMk,

where V denotes the Riemannian connection with respect to g;;. Every
Sasakian manifold is nearly Sasakian, but the converse statement fails
in general ([1], [4]). For a nearly Sasakian manifold, the vector field &
is Killing ([1]), that is,

(23) VJ":‘],' + V,-r;,- = 0.

Here we define a tensor field H;; by setting

(24) VJ'?],' = ¢ji + Hj,'.

Then, from the skew-symmetry of ¢;; and (2.3), it follows that Hj;
is skew-symmetric. Here and in the sequel, we set

Hj = Hyg™, H" = Hy'g™, H}} = H’H, Hit = HH,j,
¢ = dr'gM, 8% = 6" 6%, ik = B°H3E, B = Bk ohs
where (¢7*) = (g;i)7"

3. Fundamental properties of nearly Sasakian
structure

We first of all consider the second equation of (2.1) as in the form
(3.1) $ial® = 0.
Differentiating (3.1) covariantly and using (2.1) and (2.4), we have
(3.2) (Vigia)§* = —gji + nini — Hjadia,
from which, taking the symmetric part and substituting (2.2

(33) Hjaé,‘a + H.'aéja =0
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Transvecting (3.3) with ¢,’ and using (2.1), we obtain
Hjaﬁﬁg:‘l = H:’b - H{ufaﬂb,

which together with

(3.4) H £%=1
implies .
(3.5) Hya 4}t = —Hjs.

We now apply the operator V, to the both side of (2.2). Denoting
by Ryjin the components of curvature tensor and using Ricci identity, we

have
ViVigji — Rigiad;® + Rixjadi® + ViV;dy
= —201; Vi + gkiVimi + 9iVine,

from which, taking account of (2.2) and (2.3),

—Rikia®;® + Rikja®i® + ViVidri — Rijiadi® + Rijkadi® — Vi Vidui
= =2¢x;Vini + 291;Vini + 96 Vin; — 9uVin; + 29;:Vimk

and consequently
—Riia®;® + Rikja®i® — 2V Vot + Rikia®” — Rikia®i®
—29uVni + 9 Vine — Rijiabr” + Rijka®i®
= —2g1;Vini + 29;; Vi + 9k Vin; — 9uVin; + 29;:Vim.

Thus, applying Bianchi identity to the above equation, we have

(3.6) 2Rijka®i® — Rikia®;” — Rijia®® — Rijia®s® + 291;Vin;
—2g1;Vini — 2¢;:Vime + 295V i — 29 Vi = 2V Vi,

from which, using (2.2),
2Rijka®i® — Rikia®;® — Rijia®® — Rijia®i® + 295 Vini

—29;iVim + 296V i — 29V ini + 29aVin;
—2VkV,-¢aj, = 0.

Here, taking the skew—symmetric part with respect to k and 7, and using
Ricci and Bianchi identities, we can find

(3.7) Rigja®i® + Rikai®;® + Riajidr” + Rakjidi® = 0
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with the help of (2.3).
Next, we transvect (3.7) with &', Then it follows from (2.1) that

Riajidhs, + Rbkaiéff; + Ryjatis — Rukji + Raxji€®nn = 0,

from which, alternating with respect to h and k, and taking account of
(2.1) and (3.7), we can see that

(3.8) 2Rpajihs — 2thba¢'§? + Rak;i€ nn — Ranji€ N
—Rukai€®nj + Rajnk€®ni = 0.

Replacing h, k in (3.8) by d, ¢ respectively, and transvecting the resulting
equation with #%%, we obtain

(3.9) 2Rpiji — 2Racbabiig: — 2Rakji€®h + 2Ran; i€k
—Rdmiﬁﬁﬁfa% + Rdcujsﬁﬁfa??i =0

with the help of (2.1). Transvecting (3.9) with &' yields

(3.10) Rycojé®dhi + 2Rnkjal® — 2Ranjt€ € nn + 2Rann*E'mi = 0,

from which, transvecting with ¢}* and using (2.1),

2Rdcja£ﬂ¢?1‘; + -let:uign . Rlcajfcganm = Rdmajgd‘fanl = 0»
and consequently
(3.11)  2R4cjal®d3s + Rakai€® — Raksi€E"nn — Ruas;€°E°ni = 0.

Multipling (3.11) by 2 and adding the resulting equaiton to (3.10), we
can easily obtain

(3.12) Rajact* 35 =0,
which and (3.9) imply

(3.13) Rdcbacbf.f}‘i = Rprji = Rarii€*nn + Ranjil" M-
Transvecting (3.13) with ¢j% and using (2.1), we have

(314) lebn‘ﬁg'?' = Rbajig&?:z'
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From now on we prepare the following lemma.
Lemma 3.1 (cf. [4], [5]). On a (2n + 1)-dimensional nearly Sasakian
manifold M*"+!

(3.15) R;i€' = (2n + Hy H™)y;
and
(3.16) Hy H" = const.,

where R;; denote the components of Ricci tensor of M1,

Proof. Differentiating (3.4) covariantly, we have
(ViHia)§* = —H;aV;£°,
which and (2.4) imply
(3.17) (V;Hio)E* = —Hio(0;* + H;%).
On the other hand, it follows from (2.3) that

ViVini + ViVin; =0,
Vijk + V_,-an,- = 01
ViVin; + ViVine = 0,

from which together with Ricci identity, we have

ViVini + ViVin; =0,
ViVime + VieVini + Ryjin€® = 0,
ViVin; + Riija€® + V;iVimk + Rjira€® = 0,

which and Bianchi identity give
(3.18) ViVini + V;Vige + ViVin; + Ryij.€° = 0.

Since
ViiVini = Viéji + Vi Hj;,

(3.18) implies
(3.19) Raiji€®* = —Vidji — Vi Hj;.

Now we transvect (3.19) with ¢/;. Then, from (2.1) and (3.12), we find

(Vidii + ViH;i) ¢ =0,
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from which, transvecting with ¢ and making use of (2.1),

Vidrs + ViHrs = [(Vidr;)E + (ViHr))E N,
—[(vkqbsj)&, + (kaaj)gj]nra

and consequently
(3.20) Vi¢;i+ ViHji= (gk; + HyoHi® )0 — (9k; + HiaH; )i
Hence it follows from (3.19) and (3.20) that
(3.21) Rakji€® = —Vidji— ViHji
= (gxj + HeaH; )i — (94 + Hia Hi" )15,
from which, transvecting with ¢*/, we obtain
Ri,€® = (2n + Hy H")n;,

which is the first assertion of the lemma.
On the other side, transvecting (3.21) with ¢’* and H’, respectively
and using (3.1) and (3.4), we can see that

(3.22)  (Vidba + ViHia)9™ =0, (Vidua + ViHya)H™ =0,
which together with ¢;;¢’* = 2n gives
(3.23) (ViHa)¢™ = 0.

Furthermore, applying the operator Vi to (3.3) and transvecting the
resulting equation with ¢’*, we have

(ViHp)9™ + (Vi) H™ =0,
which and (3.23) yield
(Videa)H™ =0,

and consequently
(ViHp ) H®™ =0

with the aid of (3.22). Hence Hy,H"® = const., which is the second
assertion of the lemma.

We next prove the following lemma.
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Lemma 3.2. (cf. [4], [5]). On a nearly Sasakian manifold

(3.24)  (Vidjs)da"H® = —Hi o Hi"n; + HjoHini + Hiai™n;-

Proof. Differentiating the first equation of (2.1) covariantly, we have
(Vioai)d;" + ¢aivké5ja = (Vini)n; + 0:Vin;,

which together with (2.4) leads to

(3.25) (Viai)d;" = (Vid;a)d:® + (0x; + Hij)mi + (i + Hii)n;-

Therefore, (3.25) together with (2.2) implies

(Vadri)9;® = —(Vidja)di® — 20;mi + djimk
—(@x; + Hij)ni — (¢xi + Hii)nj,

from which, interchanging pairwise the indices k, j and then using (2.2),
we obtain

(3.26) (Va0;i)or" = (Vidja)di® — (dx; — Hij)ni + 20xim; — Hjimg.

Transvecting (3.26) with ¢’ and changing the indices a,j,!l to b,a,j,
respectively, we find

(Vi) 815 = (Viba)$;°6i* — ($ra8;” — Hra$i® )i — Haih; nis
from which, using (2.1), (3.2) and (3.25),

(3.27) (Vbtﬁm')éif; = =Vidji — 2gk;m + gkinj
+06ni0i — SraHi®nj + Dol k.

From now on, we differentiate (3.25) covariantly and use (2.1), (3.3),
(3.6), (3.14) and (3.21). Then we can easily verify that

(Vi9ia)(Vi9;%) + (Vid;a)(Vi6i") + R + Rijui
(3.28) —Riina® — Riira®iy + 29u95i — 206915 — 201k,
+okid1; — Gudk; + HiiHi; + HiiHy; — 2g9um;mi + grimin;
+gunen; + guneni + gk — 9kiHia @ — giHia b
—01iHra®i® — grjHiadi" = 0.
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Interchanging pairwise the indices i, [ to r,s in (3.28) and transvecting
it with ¢, we can find

(Vi#ia)(Vi9;%) — Vid;jaViedi® + 2(Vidi;)ni + 2(Vidii)n;

—(Vidis)da"H; " + (Vid;s)0a Hi* i + (Vidjs)0a” Hi 0
(3.29) —(Vid;s)da"Hi"m + Ryt — Rk:‘ba¢?;‘l + Rribaﬁﬁ'z'; — Ryt

+4grmini — g — GuNkN; — GriMNi — G MkNi

—kibi; — b1ibk; — 20udbji + HeiHij — HiiHy;

—gkiH1.0;" + 91i Hia ;" + gxj H1a9i® — 91 Hra 9"

+H o Hi"nim; — 2Hyo H i + Hio H;*mini + 2Hga $1"nm:

—Hiadi®ninj + Hia i mimi = 0.

Equations (3.28) and (3.29) give

2(Viia)(V19;%) + 2(Vidii)n; + 2(Vidr; )ni — (Vidis)da*H; mi
+(Vidis)0a" Hi"m + (Vidjs)ba” Hi"ni — (Vidjs)da” Hi*ni + 2Rpar;
_2Rkiba¢?; + 29195i — 29kiG1; — 2G1i9k; — 2QuPji — 201i D
+2H i Hij + 29un;ni — 29xiH1a$;® — 291 Hea $:® + Hia Hi*min;
—2H H*nmi + Hi H;*mimi + 2Hya " njmi
—Hya®i®min; + Hia®"mmi = 0,

from which, interchanging pairwise the indices k,? and [, 7 and subtract-
ing, we have '

(Vidis)ba" Hi"1j — (Vidis)ba’ Hi ik + (Vidjs )b Hi i
H(Vidjs)ba"Hi" e — (Vidis)ba" Hi"nj — (Vidis)da"H; mi
—(Vid;s)da"Hi*ni + (Vidja)ba’ Hi*m + Hia ;" nini
+2H H;"mn; — 2H o H* i — Hiadi"mim; — 4Hia b1 nimi
—Hia¢:"min; + Hiadi"mmi = 0

with the help of (3.3) and (3.14). Transvecting the above equation with

¢' and using (2.1), (3.4) and (V,¢;;)¢* = —H;,¢;*, which is a direct
consequence of (2.2) and (3.3), we can obtain

(3.30)(Vidjs)¢a"Hi® — (Vidis)9a"H;* = HpoH;ni — HiaH n)j
—Ho®;"ni + Hiadi®nj.
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Taking the symmetric part of (3.30) with respect to & and j, and using
(2.1), (2.2) and (3.3), we find

(Vidrs)0a H;* + (Vidjs) 9" Hi" = —H o Hy*n; — HigH; e
+2H  H;"ni + Hia bk 15 + Hiad; 0k,
which together with (3.30) leads to our assertion (3.24).

Finally we prepare the following lemma.
Lemma 3.3. On a nearly Sasakian manifold

Hi;Roin + H Ryjiy = —(Hi H;®* — H% Hiy)nan;

(3.31) +(HyoHi® — HiSsHis)nm; — (HiaH;® — HES Ho)mins
+(HoH;* — HES H; s — Hi2(dis + His)(di; + Hij)
+Hp (¢is + His) (9 + Hij) — Hia( b5 + Hjs) (b + Hii)
+Hi (@50 + Hjo)( i + Hii)-

Proof. At first we transvect (3.24) with ¢;' and make use of (2.1), (3.4)
and (3.5). Then we get

(3.32) (Vibia) Hi® = Hiisn; — Hezdiams — Huan;.
On the other hand, transvecting (3.20) with H}* and using (3.4), we have
(Vidja)Hn® + (ViHjo)Hy® = (Hue + HraH," Hy)mj,
from which, substituting (3.32),
(ViH;o)Hy* = —Hi(dns + Hps)nj + HS, bnsni
and consequently
Vi(HjoHr") = —H}3(Sns + His)nj — Hiia($5s + Hjs) -

Hence, applying the opertor V; to the above equation and using (2.1),
(2.4), (3.3), (3.4) and (3.21), we can easily verify that

ViVi(HjoHi") = 2(Hi Hi" — Hiy Hig)nimi — (Hi H® — H:‘L?His)nkﬂj
—(HiH;* — Hiy? Hjs)nini) — Hi2(¢is + His)(é15 + Hij)
—Hii(¢js + Hjs)(du + Hi),
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which and Ricei identity imply our assertion (3.31).

4. Proof of main theorem

In a (2n + 1)-dimensional nearly Sasakian manifold M?***!  the
contact conformal curvature tensor field Co ;" is defined by

i .
Cokji" = Rusi" + (84 Rji — &; Rus + Ri"g;i — Ri"gui
—Ri" ;i + By — mE R+ 1, Bis — S

(4-1) +¢thL: Skhé_?i + S h¢k1 + 2¢k3 + "Skj¢l )
1 (n+ ...).s
2n(n_+_1)[.~nz~n--2+ (dx"bji — b;" brs
1 3n +
—2¢3;0:") + TR 1)[71 +2— (_"_l](,gkg” 6 gki)
1 (3n + 2)s

[—(4n? + 5n + 2) + ]

+2n(n +1) 2n
(8fn;mi — 6Fmans + mi€hgsi — ni€ gni),
where s denotes the scalar curvature of M?"t! S, = ¢thh.- and
Si* = Sjig™.
From now on we assume that the contact conformal curvature tensor

field of M?"*! vanishes identically. Then, from (4.1) with C'o,kj,ﬁ =0, we
have

1
H;°H,R,iu = _%[HjaHalRik — H;"H,Ra.ga + H;"H,’ Ragix
—H;"H Ry — H;"H," Ranink + H;°H,® Ronim

—H;*H,¢uSix + H;"H," Sarbit — H;* H,* Sadin
+H3aHa ¢ak511 =t 2H3aH ¢saSkl -+ 2HJaHasSst¢kl]

2)s
RV . R, (; . P S (n+ H “H," ¢s1i
2n(n+1)[ nf—n-2+ I( *Go ik
~H;"H, ¢p0u — 2H;"H ’¢u¢kl)
1 (3n +2)s
———r 2———'—H°a;“HHa1
e _l_l)[n-l— ) 19ik kgit)

1 g (3n+2)s
_2n(n+1)[——(4n +5n+2)+ o ]

(H;®Hamine — H;®* Hagnim),
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which together with (3.31) gives

i
%[H:’a aRjx — H*H,"Rygin + Hi*H, Ragie — Hi Hok Rjt
—H;"H.Ranjni + H;"H," Ry — H"H," ¢Sk + H;" H,* S5 i
—H;°H,*Sa¢;r + H"H, ¢ Sj1 + 2H,"H,* $5; St + 2H,;" H," S i

(n+ )s](H“H *Pdik — Hi"H, o051

. Pn?—n-—2
+2n(n+ 1)[ e o

a s 3n -+ 2)s . i
—-2H;"H, ¢sj¢k!) + _911(11 e 1)[n + 2 - %](H‘- - H; Hukgﬂ)
1 2 (311 + )s a

—H;*H.*Rn = (HiH:® - “"’Hi,)nkn.-
~(HyoHi® = Hig Hisynn; + (HoH,® — Hig H )ne
—(HyoH;® — Hi Hj)nmi + Hid(¢is + His)(615 + Hij)
—Hp (dis + His ) (ki + Hij) + Hia(05s + Hjs)(dii + Hi)
Hi(¢js + Hjs)(Ski + Hii).
Transvecting the above equation with £¥¢7 and using (3.4) and (3.15),
we can easily obtain

(Hy H*)H°H,; = —2nH ¥’ H,,,
which implies
—(HpH*)? = 2n||H*Ho|?

and consequently H;; = 0. Thus we complete the proof of the main
theorem stated in the first section.

Remark. The contact conformal curvature tensor field of S° (properly
imbedded in S®) never vanishes identically.

Remark. (cf. [1]). Any 3-dimensional nearly Sasakian manifold is
Sasakian.
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