METABOLISM OF 15N-UREA IN THE HINDGUT OF CATTLE H. Bergner Humboldt-University, Berlin, GDR and A. Sommer Institute of Animal Production, Nitra, CS ### Introduction The general principle of microbial utilization of nitrogen derived from plasma urea in the hindgut of ruminants was shown from some authors. Furthermore, it is known that the urea inflow into the large intestine is mainly affected by the amount of fermentable material reaching this segment of the digestive tract (Nolan and Stachiw, 1979; Mason et al., 1981). The present study examined the effect of an additional supply of fermentable material to the hindgut on the inflow of plasma urea and its microbial utilization in young cattle and showed a comparison after intracaecal urea application. ## Materials and Methods The experiments were carried out on 3 bulls in experiment A (mean LW 198 kg), 3 bulls in experiment B (192 kg) and 2 heifers in experiment C (226 kg), equipped with ileo-caecal re-entrant cannulas and with catheters in the jugular vein. Ileal digesta was precollected and stored at - 20°C. During the course of the experiment (24 h) 15 N urea was infused intravenously (30 g urea with 75 atom-% 15 N-excess) in the experiments A and B or intracaecal (24 g urea with 10 % 15 N-excess) in experiment C. During this period and the following 6 hours the cannula was disconnected and out-flowing ileal digesta were removed quantitatively. While in group A precollected digesta only were reintroduced into the distal part of the cannula the reintroduced ileal digesta in the groups B and C was supplemented with partly hydrolysed straw meal at a rate of 10 % of the DM-intake. The precollected digesta (A), the digesta + straw meal (B) and the digesta + straw meal + 1 g 15 N-urea (C) were introduced hourly into the distal part of the cannula. Nfractions of faeces, ileal digesta and urine were analysed for 15 N-excess. ### Results and Discussion The average atom-% ¹⁵ N-excess of faccal NH₃-N during the urea application period (24 h), the next 6 hours with closed cannula and the later 36 hours (72 h after beginning) is shown in figure 1. Figure 1. Atom-% 15N-excess in NH3-N of faeces. The labelling of NH₃-N in facces was the highest at the 24th to 30th hour after the start of the urea application. The atom-% ¹⁵N-excess in group A (without an extra fermentable fibre source) was 2 to 3 times higher in comparison to group B with added partly hydrolysed straw meal to the reintroduced digesta. The ¹⁵N-labelling of faecal bacteria-N is shown in figure 2. The highest labelling was found in group C after intracaecal urea application. The added partly hydrolysed straw meal caused a doubled atom-% ¹⁵ N-excess during the i.v. urea infusion in group B in comparison to group A. The ¹⁵ N-labelling of bacterial nitrogen in the facces increased sharply in the groups A and B after opening the cannula with a time lag of 6 hours. This is in following of the high ¹⁵N-labelling of the ileal digesta. In figure 3 is shown the atom-% ¹⁵N-excess of the faecal total-N The curves represent the ¹⁵N-labelling of bacterial-N in faeces in consideration of the amounts of non bacteria nitrogen in faeces. The added fermentable fibre source in group B caused a higher ¹⁵N-incorporation after the influx of endogenous ¹⁵N-labelled compounds from the iteal digesta also. The fermentable sources of the partly hydrolysed straw meal were utilized or left the large intestine 24 hours after the end of ¹⁵ N-administration. In figure 4 is shown the ¹⁵ N-excess excretion in faeces in percent of the applied ¹⁵ N-excess in urea. The added fermentable fibre source in group B caused a 4 times higher ¹⁵ N-utilization in comparison to group A. The very high ¹⁵ N-labelling of ammonia-N (figure 1) in group A indicated a higher influx of ¹⁵N-labelled urea as 0.17% of the ¹⁵N-application. The ¹⁵N-excess excretion in faeces in group C was 3.28% in average (3.31%, 3.25%) of the applied ¹⁵N-excess. This measurement shows a two fold higher utilization rate in group C in comparison to group B. It seems that urease activities of microbes, associated with the gut wall, hydrolysed the main part of ¹⁵N-labelled Figure 2. 15N-excess in bacterial-N of faeces. Figure 3. Atom-% 15N-excess in total-N of faeces. #### BERGNER AND SOMMER Figure 4. ¹⁵N-excess excretion in faeces, % of the applied amount (Mean ± SE for groups A and B, in group C values of the individual animals). urca entering the large intestine through the gut wall. A very fast absorption of ammonia near the gut wall reduced the utilization rate for this ¹⁵N-labelled ammonia. When the ¹⁵N-labelled urea was mixed with digesta (group C) the urease activities of the whole digesta hydrolysed the urea, the NH₃-absorption rate through the gut wall was not so fast and the utilization rate of applied urea was higher. (Key Words: Cattle, 15 N-urea, Hindgut) #### Literature Cited Mason, V.C. and Z. Tierphysiol. 1981. Tierernahr., Futtermittelkunde. 45:161. Nolan, J.V. and S. Stachiw. 1979. Fermentation and nitrogen dynamics in Merino sheep given a low-quality-roughage diet. Brif. J. Nutr. 42:63.