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On the Singularity of the Matrix Sign Function Algoritim

Hyoung Joong KIM and Jang Gyu LEE
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Introduction

Matrix sign function algorithm has been
used widely in the various systems
engineering fields'®, The standard matrix sign
function algorithm proposed by Roberts! is
represented by the following recursive

equation
Seur = (S8
o1 = -2-( kST 8

Where Sp=A Then this algorithm can com-
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pute sign(A). Roberts! suggesfed that
convergence of the standard algorithm (1)
can be improved by using the recursive

equation

Spar =S + BuSi ! (2

with suitably selected scalars «; and 8, Balzer®
generalized the selection method of a; and 5
under the constraints that

ay+B8yx=1 and lime,=limfB,= 1
k—o k—o 2
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and proposed the oplimal values,

1t is easy io show that this algorithm is
satisfactory for complex and repeated
the algorithm is

eigenvalues, However,

undefined in the case where a matrix A has
either zero or purely imaginary eigenvalues.
Since a zero or a pair of purely imaginary
eigenvalues may not guarantee the algorithm
convergence, a property of the matrix sign
function algorithm for the matrix having these
eigenvalues should be clarified. It can be
demonstrated that the matrix sign function
algorithm results a singular matrix though an
S is not singular, if the matrix contains the
Such

singularities are independent of the condition

purely imaginary eigenvalues,
of the matrix A

Main result

A singular matrix can be easiy identified
in the matrix sign function algorithm because
jits inverse matrix does not exist. A matrix
having at least one purely imaginary
eigenvalues can also be easily identified in the
matrix sign function algorithm due to the

methods which will be stated hereafter.
Lemma 1. If an nxX=2 matrix A has eigen-
value pairs & jm then det {A24y2])=0,

Proof. Assume that A has an eigenvalue pair
+ jm. Then its pseudo - Jordan canonical form
M1AM is given by

. 0
MAM = [A ]
0 J.
where J, is an (n—2) X (n~2) Jordan canonical

form and

4. = [0 m] 3

Now,
M V(A +mPI) M=

P +mPl 0
M-
[ o ]M,
0 Jetm' [
where 42 +y2I=0 Thus, det

(L4m*1) = 0.

It equally holds for the matrix having
repeated eigenvalue pairs & jm It completes

the proof. Q. E. D.

Theorem 1. A nonsingular matrix A has at

least one eigenvalue pair £ jm if and only if

fA+m* A ') is singular,

Proof. If part) Let A be a pseudoJordan
canonical form of A Assume that A has at
least one real eigenvalue a Then, (A+m?A"1)
has an entry (Z+m?)/a which cannot be zero
unless ¢=0. Since A is nonsingular by the

assumption, a# (,

Assume that A has an eigenvalue pair ax jb
Then A has a following pseudoJordan block

of the form
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[ a b ]
-b a
Thus, (A+m¥\"') has a following

pseudoJordan block

a \ b
a +m? -m
@ty p? a?45?
: b ¢
-bim a+m?
alypt a?+p?

The above pseudo-Jordan block becomes

singular if the following relation

b
(a+m? )2+ Co? b2)2=0 '

a’t+h? e+
holds. The pseudo-Jordan block of (4+mn 4™
becomes singular only when ¢=0 and b=m
since A is nonsingular. It equally holds for the
matrix having repeated eigenvalue pairs = jm,
too,
(Only if part) Since- A has at least on
eigenvalue pair *jm, its characteristic poly-

nomial p(s) is of the form
pls) = (s¥+m?) qls).
By Cayley — Hamition Theorem,
p(A) =4 +m*D) q(4) = o.

From Lemma 1, det(A+»2)=0. Since A is

nonsingular, we have

det (A+nm? A *)=0.

It equally holds for the matrix having repeated
eigerivalue pairs =*jm, too. It completes the

proof. Q.E.D.

The above Theorem 1 states that although
a matrix A4 is not singular, S can be singular.
That is to say, a nonsigular matrix having at
least on purely imaginary eigenvalue pair )1
in the standard matrix sign function algorithm
(1) or +j¥By/ %, in the accelerated matrix
sign function algorithm (2) generates a sin-

gular matrix S,

Assume that A, has a pair of purely imag-
inary eigenvalue pair = jm, having the form
(3) such that

0 Mo
A= ]
-my 0

Then the standard matrix sign function algo-

rithm (1) for the A. is of the form

0 Wy - —1-
S _ 1 My
k+l'—'_2— 1 S():Ac
Myt — 0
e
Thus,
1 -1
Mis1 =75 my-m™ 1), (4)

If m=1, then m,=0 from (4). That is to
say, if a matrix A. has an eigenvalue pair % J1,
then S of (1) becomes singular. A sequence
wy that drives my., with mo=ww to be zero can
be identified from the inverse mapping of (4)
such that
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Wi+ 1=tV g, Wo=%1 (5)

with w=wg+1. Thus with §,=A, having a pair
of purely imaginary eigenvalues +jw,obtained
from the above recursive equation (5), Sk+1
becomes singular in the standard matrix sign

function algorthm (1).

Similarly, the accelerated matrix sign

function algorithm (2) for the A.is of the form

0 @ 1y~ o
1 my
Sk+ 1:“_5 180:/10
—dkmk—*-m—k 0
Thus,
1
mk+l—'2—(akm(_ﬁkmk_l) . (6)

If m= +jv/Be/a%, then mi+;=0 from (6). That
is to say, if a matrix A. has an eigenvalue pair
+j/By/a,, then § of (1) becomes singular. A
sequence wy that my +  with me=w, to be zero
can be identified form the inverse mapping of

(4) such that

Wi+ = Q= Vau)ag ',
sziVBo;aO (7)

with #,=w +a,8,. Thus with S¢=A. having a
pair of purely imaginary eigenvalues = juy
obtained from the above recursive equation
(7), Sk+1 becomes sigular in the accelerated

matrix sign function algorithm (2).

The A, that makes S«+1 to be singular is not

unique. Since the w¢s have two vlues in the
equations (5) and (7), the number of wis that
drives Sx+1into a singular matrix is 2k *!, At
any rate, the purely imaginary eigenvalue pair
can be identified and located at the (k+1)th
step in the matrix sign function algorithms (1)

and (2) or from the Theorem 1. It can be

applied to identify and locate the ordinary
eigenvalue pair 4+jm theoretically by shifting
the original eigenvalue pair +jm by A such

that
A+ il

where 1 is a known scalar.

Conclusion

Some properties concerning the purely
imaginary eigenvalues in the matrix sign
function algorithm have been explicated. It
should be mentioned that a-nonsigular matrix
can generate a singular matrix in the matrix
sign function algorthm independently of the
matrix condition. That is to say, even a
well ~ condtioned matrix can generate a sin-
gular matrix in the matix sign function
algorithms (1) and (2). These properties can
be used to identify and locate all the

eigenvalues of a maftrix theoretically.
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