Equilibria between Low-spin State ($D_{4h}$) and High-spin State ($O_h$) of the Ni(II)-$N_4$ Complex Ion ($N_4$ : 2,12-dimethyl-3,7,11,17-tetraazabicyclo-11,3,1-heptadeca-1(17),2,11,13,15-pentaene)

Ni(II)-$N_4$ 착이온의 낮은 스핀상태 ($D_{4h}$)와 높은 스핀상태 ($O_h$)간의 평형 ($N_4$ : 2,12-dimethyl-3,7,11,17-tetraazabicyclo-11,3,1-heptadeca-1(17),2,11,13,15-pentaene)

  • Yu-Chul Park (Department of Chemistry, Kyungpook National University) ;
  • Jong-Chul Byun (Department of Chemistry, Kyungpook National University) ;
  • Mahn-Su Yu (Department of Chemistry, Kyungpook National University)
  • 박유철 (경북대학교 자연과학대학 화학과) ;
  • 변종철 (경북대학교 자연과학대학 화학과) ;
  • 유만수 (경북대학교 자연과학대학 화학과)
  • Published : 1989.12.20

Abstract

The chemical equilibria of Ni(II)-tetraamine (tetraamine = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-11,3,1-heptadeca-1(17),2,11,13,15-pentaene) complex ion in water, acetonitrile, acetone and nitromethane were investigated using spectrophotometric method, respectively. The equilibria between low-spin ($D_{4h}$) and high-spin ($O_h$) structures of Ni-tetraamine complex ion were presented in water, acetonitrile and acetone, but not in nitromethane. The eqilibrium constants, the reaction enthalpies and the reaction entropies were determined from analysis of the temperature dependence of the electronic spectra. The formation of the triplet species ($O_h$) was found to be exothermic. The solvent and electrolyte effects on the equilibrium constants could be explained by the dielectric constants of solvents and the reaction entropies.

물, 아세토니트릴, 아세톤 및 니트로메탄에서 Ni(II)-tetraamine 착물(tetraamine=2.12-dimethyl-3,7,11,17-tetraazabicyclo-11,3,1-heptadeca-1(17)2,11,13,15-pentaene)의 화학평형을 분광광도법을 이용하여 각각 관찰하였다. Ni(II)-tetraamine 착이온의 낮은 스핀($D_{4h}$) 구조와 높은 스핀($O_h$)구조간의 평형이 물, 아세토니트릴, 아세톤 용액에서는 나타났지만 니트로메탄 용액에서 나타나지 않았다. 평형상수와 반응엔탈피 및 반응엔트로피는 착물의 전자스펙트럼에 대한온도의 영향을 분석하므로써 결정하였다. $O_h$ 구조인 triplet 화학종의 형성은 발열과정으로 나타났었다. $D_{4h}$$O_h$간의 평형에 대한 용매와 전해질의 영향은 용매의 유전상수와 반응엔트로피로 설명할 수 있었다.

Keywords

References

  1. Inorg. Chem. v.18 R. R. Gagne;J. L. Allison;D. M. Ingle
  2. Bull. Chem. Soc. Jpn. v.53 K. Mochizuki;T. Ito;M. Fujimoto
  3. Inorg. Chem. v.20 N. K. Kidahl;J. J. Lewis;G. Antonopoulos
  4. Inorg. Chem. v.23 D. T. Richens;I. K. Adzamli;P. Leupin;A. G. Sykes
  5. Inorg. Chem. v.23 Ch. Lee;Ch. Chung
  6. Inorg. Chem. v.23 E. J. Billo
  7. Inorg. Chem. v.24 J. G. Johns;G. A. Tondreau;J. O. Edwards;D. A. Sweigart
  8. Inorg. Chem. v.25 J. L. Cornillon;J E. Anderson;K. M. Kadish
  9. Inorg. Chem. v.16 L. Fabbrizzi
  10. J. Chem. Soc. Dalton C. Poon;S. Liao
  11. Inorg. Chem. v.18 L. Sabatini;L. Fabbrizzi
  12. J. Chem. Soc. Dalton L. Fabbrizzi
  13. Bull. Chem. Soc. Jpn. v.53 K. Mochizuki;M. Fujimoto;H. Ito;T. Ito
  14. Inorg. Chem. v.24 J. K. Beattie;M. T. Kelso;W. E. Moody;P. A. Tregloan
  15. J. Korean Chem. Soc. v.31 Y. Park;J. Byun
  16. Inorg. Chem. v.8 J. L. Karn;D. H. Busch
  17. Inorg. Synth. v.18 A. M. Tait;D. H. Busch
  18. J. Chem. Soc. Dalton A. J. Blake;T. I. Hyde;M. Schroder
  19. Inorg. Chim. Acta v.130 P.R. Norman
  20. Inorganic Chemistry J. E. Huheey
  21. Inorg. Chem. v.19 R. G. Swisher;J. P. Dayhuff;K. J. Stuehr;E. L. Blinn
  22. Inorganic Electronic Spectroscopy A. B. P. Lever