Synthesis and Electrochemical Characteristics of Rare Earths Metal Complexes

희토류금속 착물의 합성과 전기화학적 특성

  • Chil Nam Choe (Department of Chemical, Chosun University) ;
  • Suk Jin Yuon (Department of Chemical, Chosun University) ;
  • Il Du Kim (Department of Chemical, Chosun University) ;
  • Sung Pyung Kim (Department of Chemical Engineering, Chosun University) ;
  • Youn Soo Sohn (Korea Advanced Institute of Science & Technology)
  • Published : 1989.10.20

Abstract

The chemical behavior of trivalent lanthanide (Pr(III) and Yb(III)) and 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(dipivaloylmethane) complexes was investigated by the use of direct current, differential pulse polarography and cyclic voltammetry. In this study, it was founded that the reduction of trivalent lanthanide complexes was observed by one electron transfer process at Epc = -0. 13 V and -0.80 V of Pr(III), and -0.02 V of Yb(III) vs. Ag-AgCl electrode. Also, it was founded that the treatment of DP and CV to the case of a first-order chemical equilibrium reaction preceding a reversible and irreversible one electron transfer reaction, (a >0. 5) the socalled ErCr electrode process. The equilibrium constant (lnK) obtained, of various solvents, these constant were founded to be increases with decreasing dielectric constant of the solvents. Plots of lnK for these reaction against ln(l/D) for the solvents was fairly straight lines, and the behavior of the heavier lanthanides was decreased equilibrium constant with increasing atomic number.

란탄나이드 3가 (Pr(III)와 Yb(III))와 2,2,6,6-tetramethyl-3,5-heptanedione(dipivaloylmethane) 착물들의 전기화학적 거동을 DC와 DP 그리고 CV 방법으로 조사하였다. 란탄나이드 3가 착물들 중 Pr(III)의 환원은 Ag-AgCl 전극으로 Epc = -0.13 V와 -0.80 V 그리고 Yb(III)는 -0.02 Ⅴ로 1전자이동에 의한 것임을 알았고, 1차 화학평형반응이 가역과 비가역으로 진행되는 ErCr전극과정임을 DP와 CV로부터 알았다. 평형상수 lnK는 여러 용매들로부터 얻었고, 이들 상수는 용매의 유전상수가 감소함에 따라 증가됨을 알았다. 이들 반응에서 lnK는 여러 용매에 대한 ln(1/D)을 도시하면 좋은 직선관계에 있었고, 이 때 란탄나이드의 거동은 원자번호가 증가함에 따라서 lnK가 감소하였다.

Keywords

References

  1. opt. i spectr v.33 B. M. Antipenk;I. M. Balyaev;E. I. Lyubimov
  2. J. Phys. Chem. v.76 P. Tokousbalides;J. Chrysochoos
  3. spectr, Lett. v.6 J. Chrysochoos;P. Tokousbalides
  4. Indian J. Pure. Appl. Phys. v.11 B. C. Bahatt;G. C. Joshi;D. D. Pant
  5. Anal. Chem. v.49 J. C. Wright(et al.)
  6. Anal. Chem. v.51 M. V. Johnston;J. C. Wright
  7. J. opt. Soc. Am. v.28 M. I. Bhaumik;C. L. Telk
  8. J. Inorg. Nucl. Chem. v.28 N. Filipescu;N. McAvoy
  9. opt. i spectr. v.5 N. S. Poluektov(et al.)
  10. Koord. Khim. v.4 B. M. Antipenko;T. A. Privadova
  11. Indian. J. Chem. v.8 V. J. Rao;D. R. Rao;A. P. B. Sinha
  12. Bull. Chem. Soc. Jap. v.43 S. Sato;M. Wada
  13. Inorg. Chem. v.8 S. L. Bertha;G. R. Choppin
  14. Inorg. Chem. v.9 R. J. Hinchey;J. W. Cobbe
  15. J. Chem. Phys. v.19 R. E. Powell;W. M. Latimer
  16. J. Chem. Eng. Data v.21 F. H. Spedding;H. O. Weber;V. W. Saeger;H. H. Petheram;J. A. Rard;A. Habenschuss
  17. J. Phys. Chem. v.70 F. H. Spedding(et al.)
  18. J. Chem. Educ. v.47 T. Moeller
  19. Adv. Inorg. Bioinorg. Mech. v.4 S. F. Lincoln
  20. J. Chem. Phys. v.73 R. V. Southwood-Jones;W. L. Earl;K. E. Newnan;A. E. Merbach.
  21. Inorg. Chem. v.27 C. Cossy;L. Helm;A. E. Merbach
  22. Coord. Chem. Revs. v.60 J. C. G. Bunzzi;D. Wessner
  23. J. Am. Chem. Soc. v.96 R. B. King;P. R. Heckley
  24. Inorg. Chim. Acta. v.44 J. C. G. Bunzli;D. Wessner
  25. Inorg. Chem. v.2 G. S. Hammond;D. C. Nonhebel;C. S. Wu
  26. Electro Chemical Methods A. J. Bard;L. R. Faulkner
  27. Inorganic Synthesis v.23 S. Kirschner
  28. Inorganic Chemistry J. E. Huheey
  29. Principle of Polarograhy J. Heyrovsky;J. Kupta
  30. Electroanal. Chem. v.45 D. R. Ferrier;R. R. J. Schroeder
  31. Journal of Chemical Education v.60 no.9 T. Peter;R. William
  32. Inorganic Chemistry J. E. Huheey
  33. Inorg. Chem. v.23 S. Y. Wu;C. S. Lee;C. S. Chung
  34. J. Electroanal. Chem. Interfacial Electrochem. v.1 E. Laviron;L. Roullier
  35. Electroanalytical Methods J. J. Lingane
  36. Journal of Chemical Education v.60 no.9 A. M. Gary