Near-IR Spectroscopic Studies of the Hydrogen Bonding Between Thiopropionamide and N,N-Dimethylalkylamide in Carbon Tetrachloride

사염화탄소 중에서 Thiopropionamide와 N,N-Dimethylalkylamide사이의 수소결합에 관한 분광학적 연구

  • 김병철 (고려대학교 이과대학 화학과) ;
  • 윤창주 (성심여자대학 화학과) ;
  • 송규석 (미국 캘리포니아대학교(리버사이드) 화학과) ;
  • 최영상 (고려대학교 이과대학 화학과)
  • Published : 1989.04.20

Abstract

The $ν_a+amide II$ combination band of thiopropionamide has been recorded for investigation of Hydrogen bonding between thiopropionamide (TPA) and N,N-dimethylalkylamide (DMF, DMA and DMP) in carbon tetrachloride over the range of $5^{\circ}$ to $55^{\circ}$. The combination band of monomeric TPA and hydrogen-bonded TPA can be resolved by Lorentzian-Gaussian product function into monomeric TPA and hydrogen-bonded TPA with amides. The association constants ($K_1$) for the hydrogen-bonded TPA were calculated by the concentrations of the monomeric TPA and the hydrogen-bonded TPA obtained from the computer resolved absorption bands. Thermodynamic parameters for the Hydrogen bonding have been evaluated by the analysis of the temperature dependent spectra. The ${\Delta}$$H^{\circ}$ of hydrogen-bonded TPA with DMF, DMA and DMP have been found to be-12.5, -13.5 and -14.1 kJ/mol, respectively. The corresponding ${\Delta}$$S^{\circ}$for the above system were -15.2, -17.9 and -22.3 J/mol${\cdot}$deg, respectively.

사염화탄소 용액중에서 thiopropionamide(TPA)와 N,N-dimethylalkylamides(DMF, DMA, DMP)간의 수소결합에 관한 열역학적 상수를 구하기 위하여 TPA의 근적외선 영역의 흡수띠 중에서 $ν_a+amide II$조합띠를 사용하여 5${\sim}$55$^{\circ}C$ 범위에서 실험하였다. TPA 단위체와 수소결합을 하고 있는 TPA의 혼합 흡수띠를 Lorentzian-Gaussian product function을 사용하여 개개의 띠로 분리하였다. 컴퓨터로 분해하여 얻은 개개의 흡수띠의 면적을 사용하여 단위체 및 1 : 1 복합체의 농도를 계산하였고 이로부터 평형상수를 구하였다. 열역학적 상수들은 온도의존 흡수띠를 분석하여 구하였다. TPA와 DMF, DMA 및 DMP간의 1 : 1 복합체의 ${\Delta}$$H^{\circ}$는 각각 -12.5, -13.5, -14.1kJ/mol이었고.${\Delta}$$S^{\circ}$는 각각 -15.2, -17.9, -22.3kJ/mol${\cdot}$deg이었다.

Keywords

References

  1. J. Am. Chem. Soc. v.84 I. M. Klotz;J. S. Franzer
  2. J. Mol. Struct. v.6 A. S. N. Murthy;C. N. R. Rao
  3. Biophysical Chemistry C. R. Cantor;P. R. Schimmel
  4. Medical Pharmacology v.98 A. Goth
  5. Spectrochim. Acta. v.41A Y. S. Choi; Y. D. Huh;O. D. Bonner
  6. J. Korea Chem. Soc. v.29 B. C. Kim;K. S. Song;Y. S. Choi
  7. J. Korea Chem. Soc. v.30 K. B. Lee;B. C. Kim;C. J. Yun;O. D. Bonner;Y. S. Choi
  8. Thesis of Master, Korea Univ. J. Y. Choi
  9. Thesis of Master, Korea Univ. Y. A. Kim
  10. Thesis of Master, Korea Univ. H. S. Park
  11. Spectrochim. Acta. v.28A P. J. E. Griffiths;G. D. Morgan
  12. Spectrochim Lett. v.25A E. Gramsted;J. Sandstrom
  13. Tetrahedron Lett. v.3 E. Gentric;J. Lauransan;C. Roussel;J. Metzger
  14. Spectrochim. Acta. v.36A P. Vinkler;W. Walter;G. Keresztury
  15. Spectrochim. Acta. v.19 K. S. Seshardri;R. N. Jones
  16. Applied Spectroscopy. v.34 P. Torkington
  17. Can. J. Chem. v.44 J. Pitha;R. N. Jones
  18. Anal. Chem. v.42 J. J. Kankare
  19. Anal. Chem. v.53 F. J. Knorr;J. M. Harris
  20. Can. J. Chem. v.58 J. N. Spencer;R. C. Garrett;F. J. Mayer;J. E. Merkle;C. R. Powell;M. T. Tran;S. K. Berger
  21. Can. J. Chem. v.45 J. Pitha;R. N. Jones
  22. J. Chem. Soc. FaradayⅠ v.75 L. L. Graham;C. Y. Chang
  23. J. Chem. Soc. FaradayⅠ v.75 L. L. Graham;C. Y. Chang
  24. J. Chem. Phys. v.51 P. A. Kollman;L. C. Allen
  25. J. Chem. Phys. v.52 P. A. Kollman;L. C. Allen
  26. J. Chem. Phys. v.27 M. van Thiel;E. D. Becker;G. Pimentel
  27. J. Chem. Phys. v.52 A. Tusi;E. Nixon
  28. J. Phys. Chem. v.82 T. Kato;S. Hyodo;T. Fujiyama
  29. J. Phys. Chem. v.82 J. N. Spencer;J. E. Gleim;M. L. Hackman;C. H. Blevins;R. C. Garrett
  30. J. Soln. Chem. v.10 J. N. Spencer;S. K. Berger;C. R. Powell;B. D. Henning;G. S. Furman;W. M. Loffredo;E. M. Rydberg;R. A. Neubert;C. E. Shoop;D. N. Blauch
  31. J. Phys. Chem. v.85 J. N. Spencer;S. K. Berger;C. R. Powell;B. D. Henning;G. S. Furman;W. M. Loffredo;E. M. Rydberg;R. A. Neubert;C. E. Shoop;D. N. Blauch
  32. J. Phys. Chem. v.89 J. N. Spencer;C. L. Campanella;E. M. Harris;W. S. Wolbach