Abstract
A general perturbation series solution of the Smoluchowski equation is applied to investigate the rate of recombination and the remaining probability of a pair of particles in liquids. The radiative boundary condition is employed and the convergence of the perturbation series is analyzed in terms of a convergene factor in time domain. The upper bound to the error introduced by the n-th order perturbation scheme is also evaluated. The long time behaviors of the rate of recombination and the remaining probability are found to be expressed in closed forms if the perturbation series is convergent. A new and efficient method of purely numerical integration of the Smoluchowski equation is proposed and its results are compared with those obtained by the perturbation method. For the two cases where the interaction between the particles is given by (i) the Coulomb potential and (ii) the shielded Coulomb potential, the agreement between the two results is found to be excellent.