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The static and dynamic phenomena of a model for the metabolic control system with positive feedback are discussed with the
static and dynamic renormalization group theory. Then, the explicit results for the static and dynamic exponents are obtained
up to the second order of e—~expansion, ¢ being 4-d, where 4 is the space dimensionality of the system,

Introduction

One of the most interesting phenomena in a metabolic
system is the control mechanism, which regulates the flux of
material through the various metabolic pathways. There are
two kinds of the metabolic control mechanisms, which are
accomplished by negative or positive feedback.™ The most
important physical phenomenon by the negative feedback is
the biochemical oscillation.!** That oscillation can be a sus-
tained oscillation or a limit cycle. The essence in the meta-
bolic control system with positive feedback is the bioche-
mical hysteresis.!”® In a real system the mechanism is so
complicated that it is necessary to extract the essential phy-
sical phenomena of the real system. In fact, there exist sim-
ple kinetic models consisted of many dimensional ordinary
differential equations for the concentrations of the reactants
in the metabolite."* Even though they are simplified or over-
simplified, they are at least compatible with the experimental
results qualitatively. Many authors have studied the dyna-
mics of the metabolic control models. However, there are
still a lot of works to be investigated. One of them is the cri-
tical behavior of the medel with positive feedback.

The purpose of the present paper is to investigate the
behavior of a model for the metabolic control system with
positive feedback near the critical point by using the
well-known renormalization group(RG) method.>8 As usual,
we shall separate the critical behavior into the static and the
dynamic behaviors. In both cases the results will be obtain-
ed up to the second order of ¢ in the ¢-expansion, ¢ being
4-d, where d is the space dimensionality of the system.

In section I we discuss general properties of the model
given in references 1-3. The deviation of the concentrations
of the reactants from the values at the steady state is assum-

ed to be due to the Langevin random forces, which satisfy
the Gaussian condition.® We obtain a nonlinear equation for
the fluctuating concentrations near the critical point, which
is very similar to the time-dependent Landau-Ginzburg
equation for the classical Ising spin system.”® In the next
section the Gaussian approximation is applied to discuss the
static critical behavior of the model and then the RG method
is used to the nonlinear effect on the critical exponents.>? In
section IV the dynamic RG method, which is just the exten-
sion of the static RG method, is used to obtain the dynamic
exponents. In this case we simplify the dynamic process by
assuming that there are very rapid and sufficient energy ex-
changes between the system and the surroundings. Finally,
we discuss the present results and compare these with the
numerical values of the exponents from other systems,!*15

Theory

Let us consider a kinetic equation for a model of metabolic
control system with positive feedback given as*~

X1=f(Xn) - lel
X=X.\- kX, Qsisn) (2.1)
where X, and %, are the dimensioniess concentration of the

i—th component and corresponding rate constant, respective-
ly, and

_wt X3

In Eq. (2.2) p is the cooperativity of the system and # is the
controllable parameter depending on temperature. Let us
define a function, g as
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Figure 1. The steady states in (X,, #) space for various values of
#.
g (Xn tt, $)=f(Xn, u) — $Xa (2.3)
with
n
¢= 1 k.
i=2

From now on we shall omit » in X, for simplicity, The steady
state of the system is defined as

g(Xo. N,P) =(, (2.4)
The steady state is stable, if one has
28 _
[aXo]u.i<0' (25)

In the opposite sign the state is unstable. A marginal stability
point is defined as

Bt  _ 3%\ _
[aXo]i"_[aXo]‘u—o. (2.6)
From Eq. (2.6) we may obtain the equivalent condition for
the marginal stability point

[gai]u¢=o. 2.7)

In addition to the above condition given in Egs. {2.6) and
(2.7), we need an additional condition for the critical point

2 2 2
(2= E1=0, or (D=0, @)
The stability condition depends on p and #, For simplicity we
shall onty consider # = p = 2 in the present paper. Then, the
detailed analysis of the stability of the system can be done
with the aid of the Routh-Hurwitz criteria.'® The system has
three steady states when the following conditions are satis-
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Figure 2. The region of steady states in the positive feedback loop
for x and ¢. The numbers denote the number of steady states.

fied:
1/3> ¢*=x, 2Txtd —2 (2 9x) u— x(1-4x)<0. (2.9)

In the case that the above conditions are satisfied, two steady
states are stable and the intermediate state is unstable.
Otherwise, the system has only one steady state. The stabili-
ty diagrams are given in Figures 1 and 2. The critical point of
the system is give as

(Xo te pc) = (3772%,97,37V%). (2.10)
Near the critical point the following relation holds
® _ Yo iy_ 1
s (X=X (2.11)

This equation means that near the critical point there is a kind
of transition like the second order phase transition in various
kinds of system.”

Let us assume that the fluctuations occur due to the ran-
dom forces.? Then, expanding Eq. (2.1) with x; = X;- X, the
Langevin equation is given as

ﬁ — e 13
Gi=Mxt 2 g™ (X) xutg 2.12)
where
-k, 0, 0,0, f (X,)
M= 1. -k2| 09“ Ov 0
0, 0. 0," 1 -kn
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gm (Xo) = %7 _g% [ 5 Xo (2.13)
£= ST SRRLLAY o 34

It should be noted that the random forces in Eq. {2.12) cor-
respond to the scaled fluctuating concentrations. The forces
are assumed to satisfy the Gaussian condition

¢ >=0, <L ¢ ) >=28,801-0). (2.14)

Let the eigenvalue of M be - A. Then, the characteristic equa-
tion for the eigenvalue is

E’ (A- k;)=f, (Xo)- (2.15J

It is possible to obtain the eigenvalues analytically only in the
case that all the /s are equal or # is a low integer, Let us
take the simplest case, that is, # = p = 2. Then, the eigen-
values are

=a+8, A;=a—-f (2.16)
where
-3 tr) =4 (k) and p= (o~ 2 (X))

Let the right and left eigenvectors of M corresponding to A;

be _0@ fand §'2 ! repectively. We may obtain the eigenvectors
1
as

= W) =5 A= DT
F=@am=05% e

It can be checked that the eigenvectors satisfy the orthonor-
mal conditions. With the aid of the eigenvectors, the linear
equations reduce to

%J’t‘_— =~ A+ v=x A k Xz

)= 'f_‘* |
=t (2.18)

‘The solution of the above equation is

y,(t)=y;aexp(—l;t)=fexp[— A= E)EE) dr

2.19)

‘When the system is near the stable steady state, it relaxes to
the steady state value. Thus, at the stable steady state far
from the instability point or the critical point, the linear equa-
tion can be used. For the system at the unstable steady state the
fluctuations become divergent due to the mode with A, as ¢
~oo. Also, the relaxation time of the system near the critical
point or the marginal instability point becomes infinite. This
means that the system at the unstable steady state or near
the critical point and marginal stability point cannot be
described properly by the linear equation. Thus, we have to
consider the nonlinear equation. In those cases the mode with
A, dominates the dynamic behavior of the system. Up to the
third order of y,, we may write!®
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4 3‘_(3!_1_ :
+%%y, 6+, (2.20)

introducing the variables z and r as
=3/t k), =t/{ktk), (2.21)
we can rewrite Eq. (2.20) as

d% J= =gV (X,) 24 g% (X,) 22+ g% (X,) 2+¢, (2.22)
where for simplicity ¢’, has been replaced by ¢. The system

near the critical point satisfies

2 aig 0= (D= g luem w)z(z o

-Bz(n )+ (y o), (2.23)

where
g= (27/64)"% g=(27*/128) (1-u). (2.24)

and the spatial inhomogeneity has been added, since the sys-
tem in the critical region is very sensitive to the gravitational
field and thus it cannot be homogeneous. Eq. (2.23) is very
similar to the time-dependent Landau-Ginzburg equation
for the generalized continuous kinetic Ising model.” The
equation shows that the system should be controlled by the
parameter %, maintaining X and ¢ at X, and ¢_, respective-
ly. The Fokker-Planck equation corresponding to the Lange-
vin equation is

%P(z, )=-LP(z 1) (2.25)
where
Lp=2 (v~ w)z- g2t P+DZP

In order to discuss the critical phenomena of the system we
have to separate the problem into two parts, that is, static
and dynamic cases. The main idea of the static problem is to
investigate how a physical property denends on |u~x_|, when
the system approaches to the critical point, The dynamic pro-
blem is to obtain the dispersion of the fluctuation mode and
determine the effect of the critical phenomena on the non-
critical mode. In the next section we shall discuss the static
critical phenomena.

The Static Critical Phenomena

Let us define the Fourier transform of a function f{r,t)
with respect to y and r and its inverse Fourier transform as

Sk )= [drdrexp (= itk 1= w))f (7, 2),
(3.1)

flr, r}=./; expli(k-r— wr) ) f (& w),

where

[ .= o [dkd. 3.2)
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In Eq. (3.2) d is the space dimensionality of the system. At
the steady state the probability distribution is

Pu(@=cPo(@ exp(~ 25 [, 2k) 2k 2 ()2 (k)
a &
&kt byt ket R )
Pl2) exD[-—— z(_lg) (DR +-qlu.—w2(- k), (3.3)

where ¢ is the renormalized constant and P, denotes the
Gaussian probability distribution. In the linear case the cor-
relation function is

Coll) =<z z(~ B>.= B+ D™ (3.4)
where
=% ucul.

The correlation function shows the following limiting proper-
ties
lim C,(k)~k~* and 11m Coll)~ ¢ 3.5)
U= 15,
As the system approaches to the critical point, the correlation
function is governed by long wavelength {small %} fluctua-
tions, Also when & = 0, the function diverges through the cor-

relation length, as # - .. Let us define the correlation length
and function as

¢~1% (u-u) [ and ColB)~k"*"  (3.6)

The critical exponents for the Gaussian approximation are
v=%and 5=0,

We shall use the RG method to obtain the effect of non-
linear term on the critical exponents. The procedure of the
RG method is given as follows:*7

(i) We divide the wavelength region into two parts, thatis,
the long wavelength and the short wavelength regions with
the linear size of the system I. Then, we integrate out z(k)
with A/I<k<A [denoted by z,(%)], leaving the component
with 0<k <A /I [denoted by z,(k)] unintegrated.

(ii) We expand the nonlinear term systematically and in-
tegrate out the short wavelength parts.

(iti) Some scaled changes should be performed to make
the renormalized L' look like the original L. The scaled
variables are

=1k z{R)y=1"02N2,(R/1). (3.7}

With the aid of the procedures (i) and (i), we may obtain the
probability distribution up to the first order of g as

Pyl2)=c exp-—[f  en (k) (B*+a

+12y< 22> Yz, (- R - 7 Zo (k)

o< TRg< ALY -~

X 2o (k) 2o (k) 20 (k) 8 Uy + B+ vt ) ).

(3.8)
where

a D{H uc}a 7 4D|
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In order to obtain the result given in Eq. (3.8) we have used
the Gaussian approximation

<z>= 3.9)

_[0, if nis an odd integer,

< EI 2 k) >=
pu 1 &) sum over all the possible (3.10)
pair products,if n is an even
integer.

Using Eq. (3.6), we obtain the renormalized operator L’ as
Pul2wexp-L (2 L'=4 ([ 200 (ki +a)2(-4)
2 <h<Aa T -

+7=£ 2lk) 2 (k) 20k 2 (k)8 b+ Rt b)),
CZ‘{A —

(3.11)
where
B=1"F a=0"(a+12y<2>), y=0"y,
e=4-d <z>=(A*/2-qalnl). {3.12)

For simplicity we have neglected the angular factor divided
by (2x)° for obtaining <z2>. In Eq. (3.12) we can see that »
is always zero so that the first equation may hold for any
value of 7. This means that there is no interaction between
the hydrodynamic mode and nonlinear term up to first order
of 7. In order to obtain the nonzero value of n, we have to
consider the higher order terms of 7, which will be discussed
later,

It is assumed that the operator . maps onto itself at a fix-
ed point, that is,>7

L*(a, y)=L*{e, 7y} for any L (3.13)

The sign * denotes a fixed point. Then, fram the following
relation

d d
ma,|t=0, m}ﬂt:ﬂ (3.14)

we may obtain the fixed point as
(a¥y*)=1(0,0). {3.15)

The fixed point is called the Gaussian fixed point, since at the
fixed point the Gaussian approximation holds. Expanding
Eq. (3.12) near the fixed point, we have

giny Ga.on™=M " Ga. o0 =24 5
where
da=a-da* &y=7-7* 3.17)
Let 8¢ and &y be proportional to ! as
da~{", &y~1I1", (3.18)
Then, the eigenvalues are
wm= 3, m=c¢ {3.19)

For d<4, the fixed point is unstable, when / - e, while for
d>4 and e=a", the fixed point is stable. According to the
scaling rule¥7 the exponent for the correlation length, v, is
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the inverse of the eigenvalue, 4,. Thus, up to the first order
of 7, the Gaussian approximation holds.

In order to obtain the stable fixed point for 42>d, let us
consider the second order of 7. Following the same pro-
cedure as before, we obtain the following equation

a,=0(a+6y(A ~2alnd)), (3.20)
7,=07v{1-367Inl),
The fixed points are up to the first order of ¢

(@ (at7)= 0,0), (8) (at7h)= (- L £ @.21)

Using the same procedure as in the case of the first order of
¢, we obtain the eigenvalues for the non-Gaussian case as

m=2= %5, = (3.22)

The eigenvalues show the following results:

(1) If ¢<0, the non-Gaussian fixed point is never appro-
ached for I -5,

(2) When £>0 and # = %, the fixed point is stable for -

oo

The correlation length is given as>’
§~lu—u|™% v= (2-%)“. (3.23)

For the system with d = 3, the critical exponent is
v=0.600. (3.24)

In order to obtain the exponent n, we have to start from
the static case of Eq. (2.23). Then, using the iterative method
and taking the principal part for the interaction between the
hydrodynamic mode and nonlinear term up to the second or-
der of 2, we obtain the renormalized static linear response
function as

Gl ~'=Golh)™
- 188 L Gtk k=) Colk) Colh), 3.25)

where we have neglected the first and second order correc-
tion terms disconnected among wave vectors, since they do
not contribute to the coupling between the hydrodynamic
mode with £ and the nonlinear term, and G, (%) is

Go(B)~'= DIF+¢7). (3.26)

Let us use the following relations to obtain the result of the
integral in Eq. (3.25)'*
1
B+ m D)o ((k— &)+ m}®

(1-x)*'x*!
X Gk~ k) ami+ (01— x) G+ m)))*° (3.27a)

=Bla b)-‘fdx

1 1lgl, _1
ng[(jg—_g)'+p'—?’]°_28(2dc Zd)

X (pt— )4 (3.27b)
where Bla, b) is the beta function defined as .
Bla b _rar (3.28)

I'a+¥) -
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In Eq. (3.28) I"(a) is the gamma function. Assuming that the
renormalized propagator G(&) has the following form

hm G{%) -~ DE~", (3.29)

wrue

we can rewrite Eq. (3.25) at the critical point as

o 26 1
E -k’ 9 jl'h(ﬁﬂ,él“_}fs)ekrk;‘ (330)

With the aid of Eqgs. (3.27) » can be expressed as

_2d d

where

gk, a)=%8(2— & S)B0, ) Be-S. - Nk

x [ ‘ f dby(x(1- ) (- 9) eyt (3.32)

Since our calculation is limited to the cases up to ¢, it is suffi-
cient to take ¢— 0 in calculating 2(%, ¢). Then, the result is

[

7=1g (3.33)

—

For d = 3, the critical exponent is 0.0556. In the next section
let us discuss the critical dynamic behavior of the model.

The Dynamic Critical Phenomena

Let us assume that the energy exchange between the
system and the surroundings is sufficiently rapid and large,
s0 that other equations such as heat conduction and etc. ex-
cept Eq. (2.23) can be neglected. Then let us first consider
the linear part of Eq. (2.23)

22tk = -Dk+alzlk D+ (kD). @.1)
The dynamic RG method is just the extension of the static
RG method by introducing the scaling of time. The dynamic
RG method are as follows:

(i) As in the static case we have to eliminate z with short
wavelength.

(i) Let us introduce the following scale of the variable
2k, 7) as

z{k 1) =172 (L, 17 1), {4.2)
where z is the dynamic exponent. Using Eq. (4.2), we obtain
2

a-za(lk, F*r)=-D(F+a)z(lk I 1)
7 P\ ga’

+£—1+n/2§(£’ t)- 0<k<t’1/£ {43)

(iii) To make Eq. (4.3) the similar form as Eq. (4.1), let us
rescale the following variables

K=k '=0% zlkt)=2(k ). (4.4)

Then, we may have

2k o=-DWt+a)zh Dty kD), @5)
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where

D=F*D Y (F{z'. 0= (k1 Pr), o'=l'a. (4.6)
From the first equation in Eq. {(4.6) we find that the dynamic
exponent for the linear case is 2. Also, the fixed point for the

parameters ¢ and # is the Gaussian fixed point. The scaled
random force has the following property

<t (ﬁ, w)>=0,<t (_k;, w)t’ (g. w’}>
=2£"’D§(£—£’)6‘(w—w’). 4.7)

The time correlation function Cy(#,«) and the linear response
function G, (k, ) are related to each other

Colky w)=<2(k w)20,0)> =22 G,k w). 4.8)

The linear response function can be written with the aid of
Eqgs. (4.2) and (4.4)

Golk )=

Taking [ = ¥}, we have

Golk )=k "Golw/wn); w= =k,  (4.10)

At the critical point, G {*,) reduces to the static case as w—0
and it is proportional to ™! as k-0. Thus, from Eg. (4.10)
we may write

Go0, w)~w™ ' A=7n/2 4.11)

It is obvious that the linear system has 4= 0.

Let us obtain the nonzero dynamic exponent. Using the
iterative method and taking the part up the second order of
2, we have

PG, Ik, Faw). 4.9)

Glk w)=Golk, w) - 185
- ~ By Xp w10y

W= w;)Co(_fgh w,) Co(k . w,]. (412)

Golk— k- .

The procedure to solve the integral in Eq. (4.12} is very
similar to that in obtaining » in the previous section, except
that there are two more variables, that is, w, and w,. Integra-
ting over w, and w, in the complex plane, we obtain at the
critical point

kw) =Gk o) - 8'4?—2*
Gl )= Gol - 181" [

1
CER W T k- k) (4.13)

TRTR)
with
r— szJ
w D .

With the aid of Eq. (3.27) the renormalized response function
may be written as

Glk @)= Goth, )"~ 18150k w,e), 418)

where

hikw e)=1BR2-5

o }B(l —) ‘B2- 2 e-1}
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Table 1. Comparison of the Present Model with Other Systems

Expo- Liquid-  Magnetic A-transi- 3-dimen- The present model
nent Vaporl213 phase  tionin sional  Gaussian Non-
transi-  helium!4 Ising case Gaussian

tionl2.13 modells case
057 063 0666+ 0642: 0500 0.600
063 072 0006 0.003
; 0.05+ 00553 0 0.0556
0.02 0.010

1 - . . 1
X_L dix %(l+xJ"’(2+x}=L“’+£ dy(2+x-y) &

+2+x 1+x e’ )y E. (4.15)

As k-0, the value of Ak, w, ¢) of the zeroth order of canbe
easily obtained. Substituting the value into Eq. (4.14) and us-
ing Eq. (4.11), we obtain the dynamic exponent 4 at the non-
Gaussian fixed point as

A=) 0. 4.16)
From the relation of A and 2, the exponent 2 is given by
=2+ [ln(%)-l] 7. 4.17)

‘We shall discuss the result in the next section.
Discussions

We have obtained the static and dynamic behaviors for a
model of the metabolic control system with positive feed-
back 12 with the aid of the well-known RG method.> The
results are limited to the second order of £( = 4-d). It cannot
be directly judged whether they are suitable to explain a real
system, since the critical behavior of the metabolic system
has never been discussed before. Thus we may judge them
indirectly by comparing the present results with the results
of other systems, such as liquid-vapor and etc.’**

The correlation function in the critical region can be ex-
pressed in the Ornstein-Zernike theory as?®

Cinae@RAE e oy (d23)  6.1)

’jd—ﬂ/:
for a fixed ¢(>0) as » becomes large and R
Clec BRI (gz3) 5.2)

for a fixed r as £ becomes large. This expression can be reex-
pressed in Fischer's modified theory as®’

Clriocy @™ (d23) {5.3)

Some experimental and numerical results of the experiments
for various systems are given in Table 1. The results except
the Gaussian case are in good agreement with each other by
considering the experimental errors since the experiments,
especially for the liquid-vapor system, are very difficult to
perform, This is due to the following reasons: Firstly, a long
time is needed to establish an equilibrium and hysteresis
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phenomena are difficult to avoid. Secondly, the system is
very susceptible to minute amounts of impurities and highly
sensitive to the gravitational field due to the large com-
pressibility. The results may indicate that the Gaussian ap-
proximation does not hold for the present model of the meta-
bolic control system in the critical region. The present result
for the value of the exponent v in the non-Gaussian case is
smaller than that in the other results, since we have con-
sidered the terms up to the second order of ¢-expansion.
Thus, it can be improved by including the higher order
terms.

Actually, the dynamic properties of fluctuations in the
critical region are more complicated than the static proper-
ties, since various couplings between the variables can occur
during the dynamic process. However, the dynamic problem
has been reduced to the case that there is only one relaxation
mode by neglecting the fast decaying mode in Section II and
other hydrodynamic modes with the assumption that the sys-
tem and the surroundings exchange energy very rapidly and
sufficiently. Thus, the relaxation time of the model near the
critical point ts #°, where z is given as 2 + (In 4 ™.

Let us conclude by referring to some remarks:

(1) The question is open whether the present results for a
madel of the metabolic control system are applicable to real
systems,

(2) The explicit calculation for the critical exponents is
limited to the second order of ¢ in the ¢-expansion. As men-
tioned above, we may take the terms to the infinite order.
However, since the concentration variables have a large
number of components of the state vector, #, the 1/#~expan-
sion method may be more effective than the ¢-expansion.
This problem is under investigation.
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