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The static and dynamic phenomena of a model for the metabolic control system with positive feedback are discussed with the 

static and dynamic renormalization group theory. Then, the explicit results for the static and dynamic exponents are obtained 

up to the second order of £-expansion, c being 4-d, where d is the space dimensionality of the system.

Introduction

One of the most interesting phenomena in a metabolic 

system is the control mechanism, which regulates the flux of 

material through the various metabolic pathways. There are 

two kinds of the metabolic control mechanisms, which are 

accomplished by negative or positive feedback.1-4 The most 

important physical phenomenon by the negative feedback is 

the biochemical oscillation.1,3-4 That oscillation can be a sus­

tained oscillation or a limit cycle. The essence in the meta­

bolic control system with positive feedback is the bioche­

mical hysteresis.1-3 In a real system the mechanism is so 

complicated that it is necessary to extract the essential phy­

sical phenomena of the real system. In fact, there exist sim­

ple kinetic models consisted of many dimensional ordinary 

differential equations for the concentrations of the reactants 

in the metabolite.1-4 Even though they are simplified or over­

simplified, they are at least compatible with the experimental 

results qualitatively. Many authors have studied the dyna­

mics of the metabolic control models. However, there are 

still a lot of works to be investigated. One of them is the cri­

tical behavior of the model with positive feedback.

The purpose of the present paper is to investigate the 

behavior of a model for the metabolic control system with 

positive feedback near the critical point by using the 

well-known renormalization group(RG) method.5-8 As usual, 

we shall separate the critical behavior into the static and the 

dynamic behaviors. In both cases the results will be obtain­

ed up to the second order of e in the £-expansion, e being 

4-d, where d is the space dimensionality of the system.

In section II we discuss general properties of the model 

given in references 1-3. The deviation of the concentrations 

of the reactants from the values at the steady state is assum­

ed to be due to the Langevin random forces, which satisfy 

the Gaussian condition.9 We obtain a nonlinear equation for 

the fluctuating concentrations near the critical point, which 

is very similar to the time-dependent Landau-Ginzburg 

equation for the classical Ising spin system.7-8 In the next 

section the Gaussian approximation is applied to discuss the 

static critical behavior of the model and then the RG method 

is used to the nonlinear effect on the critical exponents.5-7 In 

section IV the dynamic RG method, which is just the exten­

sion of the static RG method, is used to obtain the dynamic 

exponents. In this case we simplify the dynamic process by 

assuming that there are very rapid and sufficient energy ex­

changes between the system and the surroundings. Finally, 

we discuss the present results and compare these with the 

numerical values of the exponents from other systems.10^15

Theory

Let us consider a kinetic equation for a model of metabolic 

control system with positive feedback given as1-3

X=r(xn)-血 ％

又=Xi-乩 Xt, (2.1)

where X, and 庇 are the dimensionless concentration of the 

z'-th component and corresponding rate constant, respective­

ly, and

/(Xn) = fw (2-2)

In Eq. (2.2) p is the cooperativity of the system and u is the 

controllable parameter depending on temperature. Let us 

define a function, g as
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Figure 2. The region of steady states in the positive feedback loop 

for u and 4 The numbers denote the number of steady states.

g(Xn, U, ©)=/(Xn, U)-<t>Xn (2.3)

with

奸 n kt.
1=2

From now on we shall omit n in Xn for simplicity. The steady 

state of the system is defined as

g(X어 w, p)=0. (2.4)

The steady state is stable, if one has

〔音(2.5)

In the opposite sign the state is unstable. A marginal stability 

point is defined as

嘰〕—畿〕3 (2.6)

From Eq. (2.6) we may obtain the equivalent condition for 

the marginal stability point

〔畿侦(2-7)

In addition to the above condition given in Eqs. (2.6) and 

(2.7), we need an additional condition for the critical point

广"骨佛°r虐卷〕。.8)

The stability condition depends onp and n. For simplicity we 

shall only consider h = /)= 2 in the present paper. Then, the 

detailed analysis of the stability of the system can be done 

with the aid of the Routh-Hurwitz criteria.19 The system has 

three steady states when the following conditions are satis­

fied:

l/3> 02= z, 27xw2- 2 (2 - 9x) u- x(l~ 4x) <0. (2. 9)

In the case that the above conditions are satisfied, two 옹teady 

states are stable and the intermediate state is unstable. 

Otherwise, the system has only one steady state. The stabili­

ty diagrams are given in Figures 1 and 2. The critical point of 

the system is give as

(Xwc,德=(3一”, 9二 3一“). (2.10)

Near the critical point the following relation holds

专-幸=(X-Xc)“. (2.11)
0 <Pc

This equation means that near the critical point there is a kind 

of transition like the second order phase transition in various 

kinds of system.7

Let us assume that the fluctuation옹 occur due to the ran­

dom forces.9 Then, expanding Eq. (2.1) with x( = X「X标 the 

Langevin equation is given as

^x=Mx+ 杓* (X。)名包+£ (2.12)

where

0, 0,…，0,广(X。)'

M= 1, -底，0,…，0, 0 ,
、0, 0, 0,…,1, - kn J

X= (%i,X2, Xn)T

竺=
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gg(X°) = 击鴛씌■ J。 (2.⑶

£=(匕，七，…,盘？

It should be noted that the random forces in Eq. (2.12) cor­

respond to the scaled fluctuating concentrations. The forces 

are assumed to satisfy the Gaussian condition

<K〉=0, 七(t')>=28 璀 (2.14)

Let the eigenvalue of Mbe -A. Then, the characteristic equa­

tion for the eigenvalue is

II (人-為)=广(X/ (2.15)
i= 1

It is possible to obtain the eigenvalues analytically only in the 

case that all the &'s are equal or w is a low integer. Let us 

take the simplest case, that is, n=p = 2. Then, the eigen­

values are

人]X*=a-B (2.16)

where

a=-員皿)=头(属+&) and B=〔宀 g' (X。)〕寸

Let the right and left eigenvectors of M corresponding to A,- 

be 0 1 and 世，repectively. We may obtain the eigenvectors 
as1T ~

生=('砒，心「=矗0-服DI

하 =0国 =〔1, Z'jX。)〕. (2.17)
— A £

It can be checked that the eigenvectors satisfy the orthonor­

mal conditions. With the aid of the eigenvectors, the linear 

equations reduce to

d .丄” 广(X°)『

” = '-<쓰0 (2.18)

The solution of the above equation is

丸(£)=3成xp (- 梢)=/exp〔一 f )]?； (f ) df.

(2.19)

When the system is near the stable steady state, it relaxes to 

the steady state value. Thus, at the stable steady state far 

from the instability point or the critical point, the linear equa­

tion can be used. For the system at the unstable steady state the 

fluctuations become divergent due to the mode with X2f as t 

-*00. Also, the relaxation time of the system near the critical 

point or the marginal instability point becomes infinite. This 

means that the system at the unstable steady state or near 

the critical point and marginal stability point cannot be 

described properly by the linear equation. Thus, we have to 

consider the nonlinear equation. In those cases the mode with 

人2 dominates the dynamic behavior of the system. Up to the 
third order ofy2, we may write16

= f*t、)+ 횺쓰"、tV

+ 必")'+% (2.20)

Introducing the variables 2 and r as

2=功/(為 + 底)，〃(属 + 如)， (2.21)

we can rewrite Eq. (2.20) as

务 Z(r) = (X°)z+gS (X0)z2+^3) (X°)K+S, (2.22) 

where for simplicity 技 has been replaced by f. The system 

near the critical point satisfies

孕 z(r, [DV2-q (uc- u)}z(r, r)

-阪顷 r)3+f 0 r), (2.23)

where

q= (27/64)"： g= (2가/2/128) (l — G, (2.24) 

and the spatial inhomogeneity has been added, since the sys­

tem in the critical region is very sensitive to the gravitational 

field and thus it cannot be homogeneous. Eq. (2.23) is very 

similar to the time-dependent Landau-Ginzburg equation 

for the generalized continuous kinetic Ising model.7 The 

equation shows that the system should be controlled by the 

parameter u, maintaining X and © at Xc and 虬,respective­

ly. The Fokker-Planck equation corresponding to the Lange­

vin equation is

糸r) = -LP (2, r) (2.25)

where

LP=^z\{DT-q{uc- u)}z-^z3} P+D^-P.

In order to discuss the critical phenomena of the system we 

have to separate the problem into two parts, that is, static 

and dynamic cases. The main idea of the static problem is to 

investigate how a physical property depends on 出-시, when 

the system approaches to the critical point. The dynamic pro­

blem is to obtain the dispersion of the fluctuation mode and 

determine the effect of the critical phenomena on the non- 

critical mode. In the next section we shall discuss the static 

critical phenomena.

The Static Critical Phenomena

Let us define the Fourier transform of a function f(r, r) 

with respect to £ and r and its inverse Fourier transform as

f{k, 3) = /女仆exp〔 一 i (k^r-t),

~ ~~ ~ (3.1)

r)= / exp[z(^-r-(DT)}f{k, 3),

〜 厶3 -- 〜

where

[=(2兀、广心"3阳3. (3.2)
Jlhut J —
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In Eq. (3.2) d is the space dimensionality of the system. At 

the steady state the probability distribution i옹

F农(z) = cR(z) exp〔-給/ z (知 z02)z(&)z(&)

f-1 허

乂 &也+电+虫)〕

R(z)=exp〔一 云*/，(&) iDk2-^q(uc- u)z(-k)\ (3.3) 

where c is the renormalized constant and Po denotes the 

Gaussian probability distribution. In the linear case the cor­

relation function is

Co[k) = <z(^z{ - k)> 0=(妒+L)t (3. 4) 

where

The correlation function shows the following limiting proper­

ties

lim C°(舫〜衍'and lim Co(k) — f2. (3. 5)
u- uc ~ *：-0 ~

As the system approaches to the critical point, the correlation 

function is governed by long wavelength (small k) fluctua­

tions. Also when k = 0, the function diverges through the cor­

relation length, as w-» Let us define the correlation length 

and function as

&〜 I $ (a- uc)\~v and Co 나e) 〜 k~t+r,. (3. 6)

The critical exponents for the Gaussian approximation are 

and 77= 0.

We shall use the RG method to obtain the effect of non­

linear term on the critical exponents. The procedure of the 

RG method is given as f이lows:5-'

(i) We divide the wavelength region into two parts, that is, 

the long wavelength and the short wavelength regions with 

the linear size of the system I. Then, we integrate out z(k) 

with A/Kk <A [denoted by z他)],leaving the component 

with 0<^<A /1 [denoted by z進)]unintegrated.

(ii) We expand the nonlinear term systematically and in­

tegrate out the short wavelength parts.

(iii) Some scaled changes should be performed to make 

the renormalized V look like the original L. The scaled 

variables are

Ik, z(k') = Z니成〃). (3. 7)

With the aid of the procedures (i) and (ii), we may obtain the 

probability distribution up to the first order of £ as

P凯(z) = c exp- [ f n。統)宙+° 
乙 JO< A/1 〜

+ 127<2财〉)%(-肉-却5<“치虫)

x 遍(&) z0 佐3) z0 (&) d、(&+，&+&+&)

(3.8) 

where

°= % 3- 厲，7=普。

<Z；〉=/ 哗:也). (3.9)

J A/l< 4 «] -T Of

In order to obtain the result given in Eq. (3.8) we have used 

the Gaussian approximation

〈％ _r0, if n is an odd integer,
I sum over all the possible (3.10) 

pair products, if n is an even 

integer.

Using Eq. (3.6), we obtain the renormalized operator Lz as

&⑵ ocexpT了⑵；L'=3-〔/ n 因(ki~hat) z(.-k)

+ 7 J 2 (ki) 2 Z (k3) z(k^)^ (^1+ ^2+ ^4)J,

Jo< 7Ckt< 4~~~ 〜 ~~~~

(3.11) 

where

肮=厂％2, L (a+12 /< z?> ), Yt= L 7.

e=4-4 <^>= U72-aln/). (3.12)

For simplicity we have neglected the angular factor divided 
by (2n)d for obtaining <z^>. In Eq. (3.12) we can see that 7) 

is always zero so that the first equation may hold for any 

value of /. This means that there is no interaction between 

the hydrodynamic mode and nonlinear term up to first order 

of 7. In order to obtain the nonzero value of 们 we have to 

consider the higher order terms of 7, which will be discussed 

later.

It is assumed that the operator L maps onto itself at a fix­

ed point, that is,5”

L* (山，‘)七)=L* (a") for any I. (3.13)

The sign * denotes a fixed point. Then, from the following 

relation

븞7이* = 0, 爲〃」* =。 (3.14)

we may obtain the fixed point as

(妒7*)= (0,0). (3.15)

The fixed point is called the Gaussian fixed point, since at the 

fixed point the Gaussian approximation holds. Expanding 

Eq. (3.12) near the fixed point, we have

為家，力)「=丿” 3，，")「"=食 I* ], (3.16) 

where

^a=a~a*, ^7= 7- 7* (3.17)

Let 知 and “ be proportional to I as

瞞〜0 M〜g (3.18)

Then, the eigenvalues are

“1= 3, M= £ (3.19)

For d<4, the fixed point is unstable, when / 00, while for 

d〉4 and a = a*t the fixed point is stable. According to the 

scaling rule5~7, the exponent for the correlation length, v, is 
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the inverse of the eigenvalue, u. Thus, up to the first order 

of 7, the Gaussian approximation holds.

In order to obtain the stable fixed point for 4〉d, let us 

consider the second order of 7. Following the same pro­

cedure as before, we obtain the Allowing equation

"= 广〔a+67 (시 2alnZ)〕, (3.20)

/,=7 (1-36 /InZ).

The fixed points are up to the first order of e

(a) (a*T*)= (。,0),。)(a*7*)= (-응,专" (3.21)

Using the same procedure as in the case of the first order of 

we obtain the eigenvalues for the non-Gaus옹ian case as

0=2— 专，由=-e. (3.22)

The eigenvalues show the Allowing results:

⑴ If Y0, the non-Gaussian fixed point is never appro­

ached for / -* 00.

(2) When e>0 and u = wc, the fixed point is 요table for I t 

00.

The correlation length is given as5-7

I 세; v= (2 - -y) (3.23)

For the system with = 3, the critical exponent is

v=0.600. (3.24)

In order to obtain the exponent 爪 we have to start from 

the static case of Eq. (2.23). Then, using the iterative method 

and taking the principal part for the interaction between the 

hydrodynamic mode and nonlinear term up to the second or­

der of we obtain the renormalized static linear response 

function as

GQ广=GW
— —

-18y9z ［ G。也-虫-包)(3.25) 

41，& 〜〜 〜

where we have neglected the first and second order correc­

tion term옪 disconnected among wave vectors, since they do 

not contribute to the coupling between the hydrodynamic 

mode with A and the nonlinear term, and G0(k) is

(3.26)

Let us use the following relations to obtain the result of the 

integral in Eq. (3.25)地

(科+彻：)气也-］尸+，厲* = B食，$广］故

y_______________(l-x)jyr________________ (3 27a)

X tx{k-ky+xml+ (1-x) (税아b 丿

XL(k-g)t+pt-^c =玄B(救 c-M

(3.27b)

where B(a, b} is the beta function defined as .

• (3.28)
厂 0+ b)

Cheol-Ju Kim et al.

In Eq. (3.28) F(a) is the gamma function. Assuming that the 

renormalized propagator G(k) has the following form

lim GW3〜DL\ (3.29)
U-* UC ~

we can rewrite Eq. (3.25) at the critical point as

@ 耳-丄 k (k- k k2k2' (3.30)
J J\n Ki J뜨% ) tx，2

With the aid of Eqs. (3.27) T)can be expressed as

『띃-矗 g 나E、 (3.31)

where

g{k, e)=*B(2_ 号，늘-)3(1, 須)—8(2_家 £- \}k~te 

x广广広如伙(1一力尸/2(1 — ”-勺厂s, (3.32)
Jo Jo

Since our calculation is limited to the cases up to ", it is suffi­

cient to take £-> 0 in calculating Then, the result is

2
??=yg. (3.33)

For d = 3, the critical exponent is 0.0556. In the next section 

let us discuss the critical dynamic behavior of the model.

The Dynamic Critical Phenomena

Let us assume that the energy exchange between the 

system and the surroundings is sufficiently rapid and large, 

so that other equations such as heat conduction and etc. ex­

cept Eq. (2.23) can be neglected. Then let us first consider 

the linear part of Eq. (2.23)

을顷〈也 t) = - D(F+ a) z也 + 泰也 " (4.1)

The dynamic RG method is just the extension of the static 

RG method by introducing the scaling of time. The dynamic 

RG method are as follows:

(i) As in the static case we have to eliminate n with short 

wavelength.

(ii) Let us introduce the following scale of the variable 

進 r) as

八小=EF也广" (4.2)

where z is the dynamic exponent. Using Eq. (4.2), we obtain

으z。(优 l~zT)=- D^+a)z0(lk, 
or — ~

+ ri+n/2r(^ o<k<A/i. (4.3)

(iii) To make Eq. (4.3) the similar form as Eq. (4,1), let us 

rescale the following variables

k'= Ik, T= l~ZT, 9 = 2。(友(4.4)

Then, we may have

으子色 t) = - D {k2+af) z(k, r) + (& r), (4. 5) 
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where

D= LD,厂区 r)=广"弋 Wl,a'= 3. (4. 6) 

From the first equation in Eq. (4.6) we find that the dynamic 

exponent for the linear case is 2. Also, the fixed point for the 

parameters a and 8 is the Gaussian fixed point. The scaled 

random force has the following property

< r (k, 3)〉= 0,〈厂(k, w)厂(g, 3，) >

= 21J 「心时 3- 3’、). (4.7)

The time correlation function C/k,a)) and the linear response 

function G{思 3)are related to each other

C。後g) = < n堕g)z(0, 0)〉= GJ#*). (4.8)

The linear response function can be written with the aid of 

Eqs. (4.2) and (4.4)

GAk,3、)= H”GA風"). (49)

Taking l - k~xt we have

G°(E = U(3/扇;外=妒=硏 (4.10)

At the critical point, G。(底 G reduces to the static case as 
and it is proportional to w-1 as ^->0. Thus, from Eq. (4.10) 

we may write

Go(0, a)} — w~1+4; 厶= 이乙 (4.11)

It is obvious that the linear system has 厶=0.
Let us obtain the nonzero dynamic exponent. Using the 

iterative method and taking the part up the second order of 

we have

G(k, OJ)= Go (k, Ol) 一 1" f Goik- ky - kz, 

〜 〜 丿古]스 WpW2 〜 ~ ~

a)- coi~ o)2)C0(ki, o)]) Co 也、s). (4.12)

The procedure to solve the integral in Eq. (4.12) is very 

similar to that in obtaining rj in the previous section, except 

that there are two more variables, that is,(dx and a)2' Integra­

ting over and in the complex plane, we obtain at the 

critical point

G{k, a))~l= G0{k, 3)-J 18/(%)*J：氏

7 ________________________________ (a 13)

居射〔“'+ (电一包~也尸+灯+&：〕

with

, a) 
3=一可

With the aid of Eq. (3.27) the renormalized response function 

may be written as

G(k, a>)~l= G0(k} to)-1- 18/(음)*/点, a, £), (4.14)

where

h(k, 3, £)= 扌3(2- 등, 브)】3(1, 為-尸3(2- 家 lT)
— 4 Z Z Z. 乙

Expo- Liquid- Magnetic A-transi- 3-dimen- The present model

nent Vapor12-13 phase tion in sional Gaussian Non-

Table 1. Comparison of th은 Present Model with Other Systems

transi­

tion12-13

h이ium】4 Ising 

model15

case Gaussian 

case

0.57 0.63 0.666 ± 0：642 土 0.500 0.600

0.63 0.72 0.006 0.003

0.05 ± 0.055 ± 0 0.0556

0.02 0.010

撰(l+xL(2+x)方"+ /'的〔(2 + %r)好

+ (2+*) (l+x)3‘广 j-专. (4.15)

As fbQ the value of the zeroth order of can be

easily obtained. Substituting the value into Eq. (4.14) and us­

ing Eq. (4.11), we obtain the dynamic exponent △ at the non­

Gaussian fixed point as

zl= - In7). (4.16)

From the relation of 厶 and z, the exponent z is given by

z=2+〔In (*) - 1〕(4.17)

We shall discuss the result in the next section.

Discussions

We have obtained the static and dynamic behaviors for a 

model of the metabolic control system with positive feed- 

with the aid of the well-known RG method产하 The 

results are limited to the second order of e( = 4-d). It cannot 

be directly judged whether they are suitable to explain a real 

system, since the critical behavior of the metab이ic system 

has never been discussed before. Thus we may judge them 

indirectly by comparing the present results with the results 

of other systems, such as liquid-vapor and etc,10-15

The correlation function in the critical region can be ex­

pressed in th은 Ornstein-Zernike theory as20

03)8 胃项/室； 서 二 (產3) (5.1)

for a fixed f(>0) as r becomes large and ;

8) 8 으耳늘효 (a伝3) (5.2)

for a fixed rasf becomes large. This expression can b은 reex­
pressed in Fischer's modified theory as21

C(r)ocr-(d-2-T),(曲3) (5.3)

Some experimental and numerical results of the experiments 

for various systems are given in Table 1. The results except 

난le Gaussian case are in good agreement with each other by 

considering the experimental errors since the experiments, 

especially for the liquid-vapor system, are very difficult to 

perform. This is due to the following reasons: Firstly, a long 

time is i^eded to establish an equilibrium and hysteresis 
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phenomena are difficult to avoid. Secondly, the system is 

very susceptible to minute amounts of impurities and highly 

sensitive to the gravitational field due to the large com­

pressibility. The results may indicate that the Gaussian ap­

proximation does not hold for the present model of the meta­

bolic control system in the critical region. The present result 

for the value of the exponent v in the non-Gaussian case is 

smaller than that in the other results, since we have con­

sidered the terms up to the second order of e-expansion. 

Thus, it can be improved by including the higher order 

terms.

Actually, the dynamic properties of fluctuations in the 

critical region are more complicated than the static proper­

ties, since various couplings between the variables can occur 

during the dynamic process. However, the dynamic problem 

has been reduced to the case that there is only one relaxation 

mode by neglecting the fast decaying mode in Section II and 

other hydrodynamic modes with the assumption that the sys­

tem and the surroundings exchange energy very rapidly and 

sufficiently. Thus, the relaxation time of the model near th은 
critical point is k2, where z is given as 2 + (ln-|—I)75.

Let us conclude by referring to some remarks:

(1) The question is open whether the present results for a 

model of the metabolic control system are applicable to real 

systems.

(2) The explicit calculation for the critical exponents is 

limited to the second order of e in the e-expansion. As men­

tioned above, we may take the terms to the infinite order. 

However, since the concentration variables have a large 

number of components of the state vector, n, the 1/w-expan- 

sion method may be more effective than the e-expansion. 

This problem is under investigation.
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