DOI QR코드

DOI QR Code

Numerical Model Simulation of DF-CO$_2$ Transfer Chemical Laser

  • Kim, Sung-Ho (Department of Chemistry, Yonsei University) ;
  • Cho, Ung-In (Department of Chemistry, Yonsei University)
  • Published : 1989.06.20

Abstract

Theoretical analysis of DF-$CO_2$ transfer chemical laser is performed through simple kinetic model consisting of 30 chemical reactions. In this model, we calculate the power theoretically by solving the rate equations, which are related to the $D_2\;+\;F_2$ chain reaction and the DF-$CO_2$ resonance energy transfer, combined with both the gain processes and the stimulated emission processes. The calculated powers are verified with previously reported results in good agreements. The output energy rises linearly with the increase in pressure, and the duration time of output pulse show the inverse dependence on pressure. Through the detailed calculation of temperature and concentrations of reactants as a function of time, it is found that the deactivation processes of DF(v) can be neglected in low pressure, but they have to be considered in high pressure. From the parametric study for the variation on [$D_2]/[F_2$] and [$CO_2]/[D_2\;+\;F_2$] at several constant total pressure, the optimum lasing conditions are found to be in a range of 1/3 to 1 and 2 to 4, respectively.

Keywords

References

  1. Handbook of Chemical Laser T. A. Cool
  2. J. Chem. Phys. v.50 R. W. F. Gross
  3. Chem. Phys. Lett. v.2 H. L. Chen
  4. Intern. J. of Chemical Kinetics v.I N. Cohen;T. A. Jacobs
  5. Intern. J. of Chemical Kinetics v.II N. Cohen;T. A. Jacobs
  6. J. Chem. Phys. v.52 J. R. Airey
  7. Appl. Opt. v.11 no.5 R. L. Kerber;G. Emanual
  8. J. Kor. Chem. Soc. v.33 no.2 Y. M. Kim;U. I. Cho;U. Kim
  9. IEEE. J. Quantum Electron. v.QE-9 R. L. Kerber;N. Chen;G. Emanual
  10. Appl. Opt. v.12 R. L. Kerber
  11. IEEE. J. Quantum. Electron v.QE-9 T. O. Poehler;F. C. Pirkle J. R.;R. E. Walker
  12. Sov. J. Quantum Electron. v.10 no.6 V. I. Igoshin;V. Yu. Nikitin;A. N. Oraevskii;V. N. Tompashev
  13. Sov. J. Quantum Electron. v.11 no.2 A. S. Bashkin;A. N. Oraevskii;V. N. Tomashev;N. N. Yuryshev
  14. Sov. J. Quantum Electron. v.15 no.3 B. G. Bravyl;G. K. Vasilev;Kiryanov
  15. Sov. J. Quantum Electron v.14 E. U. Baikov;N. M. Gamzatov;A. N. Oraevskii;O. E. Porodinkov
  16. IEEE. J. Quantum Electron. v.QE-22 Kuni Stenersen;Gunnar Wang
  17. J. Appl. Phys. v.61 T. D. Dreiling
  18. Report AFAL-TL-68-361 Program for high power laser techniques, Vol. 2 A. D. Wood
  19. IEEE. J. Quantum Electron. v.QE-5 C. P. Christensen;C. Freed;H. A. Haus
  20. Appl. Phys. Lett. v.8 E. T. Gerry;D. A. Leonard
  21. IEEE. J. Quantum Electron. v.QE-4 N. Djeu;T. Kan;G. J. Wolga
  22. J. Opt. Soc. Am. v.52 W. F. Herget;W. E. Deeds;N. M. Gailar;R. J. Lovell;A. H. Neilsen
  23. J. Quant. Spectrosc. Radiat. Transfer v.7 B. H. Armstrong
  24. J. Quant. Spectrosc. Radiat. Transfer v.8 E. E. Whiting