DOI QR코드

DOI QR Code

Theoretical Studies on the Gas-phase Reaction of Methyl Formate with Anions$^\dag$

  • Published : 1989.06.20

Abstract

The gas-phase reactions of methyl formate with anions, $-NH_2,\;-OH,\;-CH_2CN$, are studied theoretically using the AM1 method. Stationary points are located by the reaction coordinate method, refined by the gradient norm minimization and characterized by the determination of Hessian matrix. Potential energy profiles and the stationary point structures are presented for all conceivable processes. Four reaction paths are found to be possible: formyl proton and methyl proton abstractions, carbonyl addition, and $S_N2$ process. For the most basic anion $-NH_2$ the proton abstraction path is favored, while in other case, $OH\;and\;-CH_2CN$, the carbonyl addition paths are favored. In all cases the $S_N2$ process is the most exothermic, but due to the relatively high activation barrier the process can be ruled out.

Keywords

References

  1. The Chemistry of the Carbonyl Group S. Patai
  2. Anal. Chem. v.53 C. L. Wilkins;M. L. Grass
  3. Anal. Chem. v.52 E. B. Ledford, Jr.;S. Ghaderi;R. L. White;R. B. Spencer;P. S. Kulkarni;C. L. Wilkins;M. L. Gross
  4. Chem. Phys. Lett. v.26 M. B. Comisarow;A. G. Marshall
  5. J. Am. Chem. Soc. v.98 J. F. G. Faigle;P. C. Isolani;J. M. Riveros
  6. J. Am. Chem. Soc. v.97 O. I. Asubiojo;L. K. Blair;J. I. Brauman
  7. J. Am. Chem. Soc. v.100 K. Takashima;J. M. Riveros
  8. J. Am. Chem. Soc. v.101 O. I. Asubiojo;J. I. Brauman
  9. J. Am. Chem. Soc. v.102 D. K. Bohme;G. I. Mackay;S. D. Tanner
  10. J. Am. Chem. Soc. v.103 J. E. Bartmess;R. L. Hays;G. Caldwell
  11. Recl. Trav. Chim. Pays-Bas v.107 H. van der Wel;G. J. M. Bruin;S. J. J. van der Linde;N. M. M. Nibbering;J. B. F. N. Engberts
  12. Recl. Trav. Chim. Pays-Bas v.107 H. van der Wel;N. M. M. Nibbering
  13. J. Am. Chem. Soc. v.107 C. L. Johlman;C. L. Wilkins
  14. J. Am. Chem. Soc. v.107 C. H. Depuy;J. J. Grabowski;V. M. Bierbaum;S. Ingemann;N. M. M. Nibbering
  15. J. Am. Chem. Soc. v.107 M. J. S. Dewar;E. G. Zoebisch;E. F. Healy;J. J. P. Slewart
  16. J. Am. Chem. Soc. v.108 M. J. S. Dewar;K. M. Dieter
  17. Angew. Chem. v.19 K. Muller
  18. J. Chem. Phys. v.80 S. Bell;J. S. Crighton
  19. J. Phys. Chem. v.74 K. Fukui
  20. J. Am. Chem. Soc. v.94 J. W. McIver;A. Komornichi
  21. Theory and Practice of MO calculations on Organic Molecules I. G. Csizmadia
  22. Structural Theory of Organic Chemistry N. D. Epiotis;W. R. Cherry;S. Shaik;R. L. Yates;F. Bernardi
  23. Bull. Korean Chem. Soc. v.2 I. Lee;K. B. Rhyu;B.-S. Lee
  24. Bull. Korean Chem. Soc. v.3 I. Lee;Y. G. Cheun
  25. Bull. Korean Chem. Soc. v.4 I. Lee;B.-S. Lee;K. Yang
  26. J. Comput. Chem. v.3 I. Lee;Y. G. Cheun;K. Yang
  27. J. Chem. Phys. v.76 H. Wennerstrom;S. Forsen;B. Roos
  28. J. Am. Chem. Soc. v.100 J. R. Larson;N. D. Epiotis;F. Bernardi
  29. J. Org. Chem. v.46 N. G. Rondan;K. N. Houk;P. Beak;W. J. Zajdel;J. Chandrasekhar;P. v. R. Schleyer
  30. J. Am. Chem. Soc. v.101 J. Chandraselchar;J. G. Andrade;P. v. R. Schleyer
  31. The PMO Theory of Organic Chemistry M. J. S. Dewar;R. C. Dougherty
  32. Chem. Phys. Lett. v.33 P. C. Isolani;J. M. Riveros
  33. J. Am. Chem. Soc. v.102 J. E. Bartmess
  34. J. Am. Chem. Soc. v.102 D. K. Bohme;G. I. Mackay;S. D. Tanner
  35. Lecture Notes in Chemistry v.31 H. Hartmann;K. P. Wanczeck
  36. J. Am. Chem. Soc. v.96 H. B. Burgi;J. M. Lehn;G. Wipft
  37. J. Am. Chem. Soc. v.97 G. Alagona;E. Scrocco;J. Tomasi
  38. J. Am. Chem. Soc. v.98 S. Scheiner;W. N. Lipscomb;D. A. Kleier
  39. J. Am. Chem. Soc. v.102 A. J. Stone;R. W. Erskine
  40. J. Chem. Soc., Perkin Trans II J. J. Maraver;E. S. Marcos
  41. Can. J. Chem. v.62 S. Yamabe;T. Minato;Y. Kawabata
  42. J. Am. Chem. Soc. v.109 J. F. Blake;W. L. Jorgensen
  43. B.-S. Lee
  44. J. Comput. Chem. v.2 W. L. Jorgensen;M. Ibrahim

Cited by

  1. Theoretical studies on the gas-phase pyrolysis of acetic anhydride and diacetyl sulphide vol.3, pp.5, 1989, https://doi.org/10.1002/poc.610030502