Abstract
The electrochemical behaviors of 4-(2)-thiazolylazo)-resorcinol (TAR) in acetonitrile solution was studied by DC polarography, cyclic voltammetry, controlled-potential coulometry and UV-Vis spectroscopy. The electrochemical reduction of TAR occurs in four-one electron reduction steps in acetonitrile solution. The products of the first and the third electron transfer are speculated to be a relatively stable anion radical. The second electron transfer to the dianion is followed by a chemical reaction producing a protonated species. The product of the fourth electron transfer also produces the corresponding amine compounds with a following reaction. Also every reduction wave was diffusion controlled. The first reduction wave is considerably reversible and the other waves are less reversible.