DOI QR코드

DOI QR Code

Relation Between the Repulsive Interaction and the Overlap of the Electron Densities$^\dag$

  • Heo, Hoon (Department of Chemistry, Seoul National University) ;
  • Shin, Kook-Joe (Department of Chemistry, Seoul National University) ;
  • Kim, Yung-Sik (Department of Chemistry, Seoul National University)
  • Published : 1989.06.20

Abstract

The relations between the repulsive interactions and the electron density overlaps are investigated for various closed shell-closed shell pairs, including the systems containing alkali and halide ions. It is found that the repulsive interaction($V_{rep}$) depends on the overlap of the electron density($S_{\rho}$) according to a simple exponential relation, $V_{rep}$ = $As_{\rho}\;^{\alpha}$. Furthermore, for most of the closed shell systems the $\alpha$ values are near unity and the A values do not vary much. The same tests are also performed for the open shell-closed shell, and the open shell-open shell pairs. Although the results for these systems also show exponential dependences of the repulsive interactions on the density overlaps, the details of the dependence differ greatly from those for the closed shell systems and also vary widely from one individual system to another.

Keywords

References

  1. Atoms and molecules M. Karplus;R. N. Porter
  2. Phys. Rev. v.A5 F. T. Smith
  3. Rare gas solids J. N. Murrell;M. L. Klein(ed.);J. A. Venables(ed.)
  4. J. Chim. Phys. v.46 R. S. Mulliken
  5. Mol. Phys. v.19 J. N. Murrell;J. J. C. Texeira-Dias
  6. Chem. Phys. Lett. v.80 Y. S. Kim;S. K. Kim;W. D. Lee
  7. Chem. Phys. Letters v.127 C. Nyeland;J. P. Toennies
  8. Chem. Phys. v.122 C. Nyeland;J. P. Toennies
  9. At. Data Nucl. Data Tables v.14 E. Clementi;C. Roetti
  10. Analytical Chemistry G. D. Christian
  11. J. Chem. Phys. v.55 P. E. Siska;J. M. Parson;T. P. Schafer;Y. T. Lee
  12. J. Chem. Phys. v.56 J. M. Parson;P. E. Siska;Y. T. Lee
  13. J. Chem. Phys. v.59 C. H. Chen;P. E. Siska;Y. T. Lee
  14. J. Chem. Phys. v.61 C. Y. Ng;Y. T. Lee;J. A. Barker
  15. Molec. Phys. v.19 D. W. Gough;G. P. Mattew;E. B. Smith;G. C. Maitland
  16. J. Chem. Phys. v.57 D. D. Konowalow;D. S. Zakeheim
  17. J. Chem. Phys. v.77 C. L. Kong;M. R. Chakrabarty
  18. Molec. Phys. v.35 G. C. Maitland;Wakeham
  19. J. Chem. Phys. v.56 H. Inouye;S. Kita
  20. J. Chem. Phys. v.57 H. Inouye;S. Kita
  21. J. Phys. Soc. Japan v.34 H. Inouye;S. Kita
  22. J. Chem. Phys. v.63 S. Kita;K. Noda;H. Inouye
  23. J. Chem. Phys. v.64 S. Kita;K. Noda;H. Inouye
  24. J. Chem. Phys. v.56 R. G. Gordon;Y. S. Kim
  25. J. Chem. Phys. v.57 P. Dehmer;L. Wharton
  26. J. Chem. Phys. v.52 C. J. Malerich;R. J. Cross, Jr.
  27. J. Chem. Phys. v.43 W. Kolos;L. Wolniewicz
  28. J. Chem. Phys. v.65 W. C. Stwalley
  29. J. Chem. Phys. v.66 W. C. Stwalley;W. T. Zemke;K. R. Way;K. C. Li;T. R. Proctor
  30. J. Mol. Spectrosc. v.85 W. T. Zemke;K. K. Verma;T. Yu;W. C. Stwalley
  31. J. Chem. Phys. v.80 W. C. Stwalle