Table 1. Second-Order Rate Constants for the Pyridinolysis of Substituted Phenyl Acetates at 60°C in Acetonitrile (k_{XY}/k_{HH} value)

Y	4·NO ₂	4-Cl	Н	3-CH ₃	4-CH ₃
$4 \cdot NH_2$	2.50	1.77	1.76	1.75	1.71
3,4-(CH ₃) ₂	1.73	1.39	1.21	1.20	1.20
Н	1.39	1.11	1.00*	0.99	0.98
3-COCH ₃	0.87	0.71	0.64	0.63	0.63
3-Cl	0.80	0.63	0.59	0.59	0.58

 $k_{HH} = 3.40 \times 10^{-4} \text{ (mol-lsec-1)}$

Table 2. Reaction Constants (ρ_X , ρ_Y) for Pyridinolysis of Phenyl Acetates

(a) ρ_Y values

σ_X	4-NO2	4-C1	Н	3-CH3	4-CH3
ρ _γ	-0.469 *($r = 0.991$)	-0.460 (0.988)	-0.447 (0.993)	-0.445 (0.993)	-0.441 (0.992)
(b) <i>P</i> ₃	values				
σγ	4-NH ₂	3,4-(CH ₃) ₂	Н	3-COCH ₃	3-Cl
ρ _χ	0.180 *($r = 0.997$)	0.175 (0.990)	0.165 (0.994)	0.153 (0.992)	0.148 (0.988)

*r: Correlation coefficient.

The plot of $|\rho_Y|$ vs σ_X and ρ_X vs σ_Y are well correlated with $\rho_Y^{(X)} = -0.03 \sigma_X \cdot 0.447$, (r = 0.965), and $\rho_X^{(Y)} = -0.03 \sigma_Y + 0.165$, (r = 0.966), respectively.

Therefore, the rate constants are varied with substituents X and Y and it correlated with log k_{XY} -log $k_{HH} = 0.165 \sigma_X$ -0.03 $\sigma_X \sigma_Y$ -0.447 σ_Y . The most important facts are that the coefficient of the interaction term, $\rho_{XY} \sigma_X \sigma_Y$, is the same small value of -0.03, which is derived from either ρ_X or ρ_Y , and its value indicates that the degree of interactions between nucleophile and leaving group are same but interactions between X and Y are small.

The results are interpreted in terms of concerted mechanism in which involving a metastable tetrahedral intermediate. These are in accord with the mechanism of previously reported our study¹⁰ of the pyridinolysis.

Acknowledgement. We are grateful to the Korean Science and Engineering Foundation (KOSEF) for financial support of this work.

References

- S. D. Yoh, J. . Kang and S. H. Kim, *Tetrahedron*, 44, 2167 (1988).
- P. R. Wells, "Linear Free Energy Relationships", Academic Press, London, New York, 32, 1968.
- 3. S. D. Yoh, Ph. D. Dissertation, Osaka Univ., 1973.
- Y. Tsuno, M. Fujio, S. D. Yoh, M. Sawada and Y. Yukawa, "Abstracts of the 25th Conference on Organic Reaction Mechanism", The Chemical Society of Japan, Tokyo, 199, 1974.
- S. D. Yoh, Y. Tsuno and Y. Yukawa, J. Korean Chem. Soc., 28(6), 443 (1984).
- 6. S. D. Yoh, Y. Tsuno, M. Fujio, M. Sawada and Y. Yukawa, J. Chem. Soc., Perkin Trans 2, 7, 1989.

Chemoselective Reduction of Carboxylic Acid Esters with Potassium Triethylborohydride

Nung Min Yoon*, Ho Seok Yang, and Young Soo Hwang

Department of Chemistry, Sogang University, Seoul 121-742. Received October 17, 1988

The reduction of carboxylic acid esters to the corresponding alcohols can be achieved readily with various metal hydrides such as lithium aluminum hydride¹ (LiAlH₄), diisobutylaluminum hydride² (i-Bu₂AlH), and lithium triethylborohydride³ (LiEt₃BH), however, little chemoselectivity could be expected from these strong reducing agents. On the other hand, aluminum hydride⁴ (AlH₃), borane-dimethyl sulfide⁵ (BH₃·SMe₂) (at 65 °C), lithium borohydride (LiBH₄) with 9-methoxy-9-BBN catalyst⁶, and LiBH₄-MeOH-Et₂O⁷ system have been reported to reduce esters rapidly without attacking nitro and halogen substituents.

Recently we have studied the reducing properties of potassium triethylborohydride⁸ (KEt₃BH), and compared with those of lithium derivatives (LiEt₃BH). We found an interesting phenomenon. Thus the reducing power of potassium derivative to ester is similar to LiEt₃BH which reduces esters in a few minutes, however, it reacts much slowly with other functional groups compared with LiEt₃BH. In this respect the replacement of Li⁺ with K⁺ resulted substantial decrease in reactivity for other functional groups such as epoxides, amides, nitriles *etc.* We now wish to report such chemoselectivity of KEt₃BH for the selective reduction of esters. Chemoselective reduction of esters with KEt₃BH was studied by competitive reaction. Thus an equimolar mixture of an ethyl ester and other substrate was reacted with 2.2 equivalents of KEt₃BH in THF. The reduction of ethyl caproate in the presence of cyclohexene oxide is representative. To an equimolar mixture of ethyl caproate (1 mmol) and cyclohexene oxide (1 mmol) containing 1 mmol of naphthalene as an internal standard in THF (1 ml) was added to 2.2 mmol of

Table 1. Chemoselective Reduction of Esters with KEt_3BH in Tetrahydrofuran at $0^{\circ}C^{\circ}$

entry	compounds	product	yield,ª (%)
1	ethyl caproate	hexanol	99
	cyclohexene oxide	cyclohexene oxide	100
2	ethyl cyclohexane- carboxylate ^k	cyclohexylmethanol	94
	cyclohexene oxide	cyclohexene oxide	99
3	ethyl benzoate	benzył alcohoł	95
	cyclohexene oxide	cyclohexene oxide	94.9
4	ethyl benzoate	benzyl alcohol	96
	N,N-dimethylhexaneamide	N.N-dimethyl-	98.6
		hexaneamide	
5	ethyl benzoate	benzyl alcohol	95
	capronitrile	capronitrile	94.9
6	isopropyl benzoate ²	benzyl alcohol	93
	capronitrile	isopropyl benzoate	7
		capronitrile	95
7	ethyl benzoate	benzyl alcohol	94
	quinoline	quinoline	98.6
8	ethyl benzoate	benzyl alcohol	100
	2-bromooctane	2-bromooctane	93
9	ethyl benzoate	benzyl alcohol	99.4
	bromocyclohexane	bromocyclohexane	98.6
10	ethyl benzoate	benzyl alcohol	100
	1-dodecene	1-dodecene	97
11	ethyl caproate ^d	hexanol	85
	isopropyl benzoate	ethyl caproate	14
		benzył alcohoł	12
		isopropyl benzoate	83
12	ethyl caproated	hexanol	95
	t-butyl benzoate	t-butyl benzoate	95
13	ethyl benzoate ^d	benzył alcohol	94
	t-butyl caproate	t-butyl caproate	100

^{*a*}A mixture of one mmol each of an ethyl ester and other substrate was reacted with 2.2 mmol KEt₃BH at 0 °C for 15 min. Yields were estimated by GLC, using naphthalene as an internal standard. ^{*b*}Reaction for 3 h. ^{*c*}Reaction for 6 h. ^{*d*}At -15 °C.

KEt₃BH (1.37 ml) solution in THF at 0 °C. After 15 min, the reaction mixture was quenched with 1 ml of water and oxidized with H_2O_2 -NaOH for 2 h at 30 °C. After drying with

anhydrous K₂CO₃, the GLC analysis of THF layer showed a 99% yield of hexanol and cyclohexene oxide (100%) intact. The results are summarized in Table 1. As shown in the Table, ethyl caproate, ethyl cyclohexanecarboxylate and ethyl benzoate can be reduced in the presence of cyclohexene oxide, N,N-dimethylcaproamide or capronitrile (entry 1-5) with excellent chemoselectivity. The reduction of ethyl cyclohexanecarboxylate is a little slower and completed in 3 h at 0 °C (87% in 1 h). The reduction of isopropyl benzoate is also slow, however good selectivity is realized in 6 h (entry 6). KEt₃BH is also able to reduce ester selectively leaving quiloline, 2-bromooctane, bromocyclohexane or 1-dodecene intact (entry 7-10). We do not expect these kinds of selectivity with AlH₃, BMS (at 65 °C), or LiBH₄ with a MeO-9-BBN catalyst. And KEt₃BH is also susceptible to steric effectr Thus ethyl esters could be selectively reduced in the presence of t-butyl esters at -15 °C (entry 12 and 13). When the competitive reduction of ethyl benzoate and t-butyl caproate was carried out at 0 °C, the selectivity was not satisfactory. Thus benzyl alcohol was obtained in 83% yield at 0°C, but only 75% of *l*-butyl caproate remained unattacked. Even at -15 °C, the chemoselectivity between ethyl caproate and isopropylbenzoate was less satisfactory giving the mixture of 85% hexanol and 12% benzyl alcohol together with unreacted esters (entry 11).

Acknowledgement. We are grateful to the Korea Science and Engineering Foundation for financial support of this work.

References

- N. G. Gaylord, Reduction with Complex Metal Hydride, Wiley-Interscience, New York, 1956.
- (a) E. Winterfeldt, Synthesis, 617 (1975); (b) N. M. Yocn and Y. S. Gyoung, J. Org. Chem., 50, 2443 (1985).
- H. C. Brown, S. C. Kim and S. Krishnamurthy, J. Org. Chem., 45, 1 (1980).
- N. M. Yoon and H. C. Brown, J. Am. Chem. Soc., 90, 2927 (1968).
- 5. H. C. Brown, Y. M. Choi and S. Narasimhan, J. Org. Chem., 47, 3153 (1982).
- H. C. Brown and S. Narasimhan, J. Org. Chem., 47, 1604 (1982).
- 7. K. Soai and A. Ookawa, J. Org. Chem., 51, 4000 (1986).
- N. M. Yoon, H. S. Yang and Y. S. Hwang, Bull. Korean Chem. Soc., 8, 285 (1987).

Role of Water as Our Life Expectancy due to the Agings and Various Cancers

Mu Shik Jhon

Department of Chemistry, Korea Advanced Institute of Science and Technology, Seoul 131. Received October 19, 1988

In a series of my recent papers and lectures, we discussed the roles of water in modern diseases such as cancers, diabetes and AIDS (Acquired Immune Deficiency Syndrome)¹⁻³. According to our water environment theory, the local di-