DOI QR코드

DOI QR Code

Direct Synthesis and Structure of $\eta^4$-1-Functionally Substituted 2,3,4,5-Tetraphenyl-1-Silacyclopenta-2,4-diene Complexes of Irontricarbonyl

  • Joo, Qan-Chul (Department of Chemistry, Sung Kyun Kwan University) ;
  • Sohn, Hong-Lae (Department of Chemistry, Sung Kyun Kwan University) ;
  • Hong, Jang-Hwan (Department of Chemistry, Sung Kyun Kwan University) ;
  • Kong, Young-Kun (Department of Chemistry, Kyunggi University) ;
  • Singh, P. (Department of Chemistry, North Carolina State University)
  • Published : 1989.04.20

Abstract

We obtained the new complexes, $Fe{\eta}^4-R,R'-TPSCp](CO)_3$(R,R'-TPSCp = 1,1-disubstituted 2,3,4,5-Tetraphenyl-1-Silacyclopenta-2,4-diene; R = Ph, R' = Cl, R = R' = Cl) from the reaction of the corresponding R,R'-TPSCp with ironpentacarbonyl under reflux in toluene. Also, the analogous complexes with R = R' = Me and R = Me, R' = Cl were obtained in an identical manner. We have determined the crystal structure of $Fe[Ph(Cl)-TPSCp](CO_)3$ by using Mo ka, ${\lambda}$ = 0.71069${\AA}$, where the unit cell was found to be monoclinic with a = 9.042 (6)${\AA}$, b = 19.870 (9)${\AA}$, c = 17.426 (9)${\AA}$ and ${\beta}$ = 96.28(4)$^{\circ}$. The butadiene moiety of TPSCp ring is planar and the dihedral angle of the butadiene plane and C4-Si-C25 plane was opened up to 41.8$^{\circ}$. The C-C distances in the butadiene moiety were found to be 1.4346, 1.462, and 1.440 ${\AA}$, respectively. It may be said that the four ${\pi}$-electrons are delocalized over the four carbons in five membered ring through coordination with ironcarbonyl. In this complex Fe is either in distorted tetrahedron environment with the centroid of the four C-atom butadiene moiety and three carbons of the three carbonyls or in distorted square-pyramidal environment with two midpoints of double bonds of the butadiene moiety and two carbons of carbonyl defining the base of the pyramid and the carbon of remaining carbonyl the apex.

Keywords

References

  1. Helv. Chim. Acta v.57 W. Fink
  2. J. Chem. Soc., Dalton Edward W. Abel;T. Blackmore;Robert J. Whitley
  3. Coordination Chem. Rev. v.47 Robert J. McMahon
  4. Organometallics v.5 F. Carre;E. Colomer;J. Y. Corey;R. J. Corriiu;C. Guerin;B. J. L. Henner;B. Kolani;W. W. Choy;W. C. Man
  5. J. Organomet. Chem. v.320 R. J. P. Corriu;C. Guerrin;B. J. L. Henner;W. W. Choy;W. C. Man
  6. J. Organomet. Chem. v.293 J. Dubac;A. Laporterie;H. Iloughmane
  7. Organometallics v.6 G. T. Burns;E. Colomer;R. J. P. Corriu;M. Lheureux
  8. Organometallics v.5 L. C. Ananias de Carvakho;M. Daartiguenave;F. Dahan;Dartiguenave
  9. Bull. Soc. Chim. Fr. J. C. Burnet;B. Resibois;J. Bertrand
  10. J. Organomet. Chem. v.63 H. Sakuri;J. Hayashi
  11. J. Organomet. Chem. v.110 H. Sakurai;J. Hayashi;T. Kobayashi
  12. J. Organomet. Chem. v.128 P. Jutzi;A. Karl
  13. J. Chem. Soc., Chem. Commun. K. W. Muir;R. Walker
  14. J. Organomet. Chem. v.216 Laszlo;Parknyi
  15. International Tables for X-ray Crystallography v.IV
  16. SHELXTL
  17. Acta Cryst. v.16 O. S. Mills;G. Robinson
  18. Phys. Chem. v.68 A. J. Bondi
  19. Bull. Kor. Chem. Soc. v.8 W. C. Joo;Y. C. Park;S. K. Kang;J. H. Hong;Y. K. Kong