Abstract
The approximate rates and stoichiometry of the reaction of excess potassium 9-sec-amyl-9-boratabicylco[3.3.1]nonane (K 9-sec-Am-9-BBNH) with selected organic compounds containing representative functional goups under standardized conditions (tetrahydrofuran, $0^{\circ}C)$ were examined in order to explore the reducing characteristics of the reagent for selective reductions. The reagent readily reduces aldehydes, ketones, acid chlorides and epoxides to the corresponding alcohols. However, carboxylic acid, aliphatic nitriles, t-amides, and some sulfur compounds show very little reactivity or no reactivity to this reagent. The most interesting feature of the reagent is that aromatic nitriles are reduced moderately to the corresponding aldehyde stage, wheras aliphatic nitriles are inert. In addition, the reagent shows a high stereoselectivity toward cyclic ketones at $0^{\circ}C$ and - $25^{\circ}C.$ The selectivity exhibited at $0^{\circ}C$ is comparable to that by lithium trisiamylborohydride at that temperature.