DOI QR코드

DOI QR Code

Lone Pairs in the 1,3-Sigmatropic Group Rearrangements$^1$

  • Published : 19890200

Abstract

Semiempirical computations using the AM1 and MNDO methods were carried out in order to elucidate allowed mechanisms for 1,3-group(X) rearrangement processes with X = $BH_2$, $CH_3$, CN, F, $NH_2$, OH, Cl and SH. The reactivity of the group migration was largely controlled by the steric effect in the 4-membered ring transition state, an antarafacial process having a greater energy barrier due to a greater steric repulsion. For the groups with lone pair electrons, the participation of the lone pair orbital is found to ease the steric effect by enabling the FMO interation with highly polarizable, high lying, lone pair electrons at relatively distant range; the involvement of lone pairs in the transition state causes an alteration of the symmetry selection rule to that of a 6-electron system with an allowed 1,3-suprafacial migration in contrast to an allowed 1,3-antarafacial migration for a 4-electron system. Various stereoelectronic aspects were analysed in some detail.

Keywords

References

  1. J. Am. Chem. Soc. v.94 R. C. Bingham;M. J. S. Dewar
  2. J. Am. Chem. Soc. v.99 S. Kato;K. Fukui
  3. J. Am. Chem. Soc. v.99 W. J. Bouma;D. Poppinger;L. Radom
  4. J. Am. Chem. Soc. v.101 W. J. Bouma;L. Radom
  5. J. Am. Chem. Soc. v.100 L. Carlsen;F. Duus
  6. J. Am. Chem. Soc. v.97 A. D. Isaacson;K. Morokuma
  7. J. Am. Chem. Soc. v.98 J. E. Del Bene;W. L. Kochenour
  8. J. Am. Chem. Soc. v.102 P. D. Adeney;W. J. Bouma;L. Radom;W. R. Rodwell
  9. Int. J. Quantum Chem. v.14 W. J. Bouma;M. A. Vincent;L. Radom
  10. Int. J. Quantum Chem. v.18 W. R. Rodwell;W. J. Bouma;L. Radom
  11. Theor. Chim. Acta. v.60 K. Yamashita;H. Kaminoyama;T. Yamabe;K. Fukui
  12. J. Korean Chem. Soc. v.28 J. K. Cho;I. Lee;H. K. Oh;I. H. Cho
  13. Bull. Korean Chem. Soc. v.5 J. K. Cho;I. Lee;H. K. Oh;I. H. Cho
  14. Angew. Chem. Int. Ed. Engl. v.8 R. B. Woodward;R. Hoffmann
  15. Angew. Chem. Int. Ed. Engl. v.10 M. J. S. Dewar
  16. Theory of Orientation and Stereoselection K. Fukui
  17. Acc. Chem. Res. v.4 K. Fukui
  18. Frontier Orbitals and Organic Chemical Reactions I. Fleming
  19. The Conservation of Orbital Symmetry R. B. Woodward;R. Hoffmann
  20. Symmetry Rules for Chemical Reactions R. G. Pearson
  21. Organic Reactions and Orbital Symmety(2nd ed.) T. L. Gilchrist;R. C. Storr
  22. J. Am. Chem. Soc. v.107 M. J. S. Dewar;E. G. Zoebisch;E. F. Healy;J. J. P. Stewart
  23. Available from Quantum Chemistry Program Exchange(QCPE) no.506
  24. J. Am. Chem. Soc. v.99 M. J. S. Dewar;W. J. Thiel
  25. Chem. Phys. Lett. v.45 A. Komornichi;K. Ishida;K. Morokuma
  26. J. Am. Chem. Soc. v.94 J. W. McIver, Jr.;A. Komornichi
  27. J. Am. Chem. Soc. v.97 R. E. Stanton;J. W. McIver, Jr.
  28. The PMO Theory of Organic Chemistry M. J. S. Dewar;R. C. Dougherty
  29. J. Am. Chem. Soc. v.109 M. J. S. Dewar;C. Jie
  30. M. J. S. Dewar;C. Jie v.106 C. Doubleday, Jr.;R. N. Camp;H. F. King;J. W. McIver, Jr.;D. Mullally;M. Page
  31. Angew. Chem. Int. Ed. Engl. v.19 K. Muller
  32. J. Chem. Phys. v.80 S. Bell;J. S. Crighton
  33. The MO Therory of Organic Chemistry M. J. S. Dewar
  34. J. Am. Chem. Soc. v.99 F. Bernardi;A. Mangini;N. D. Epiotis;J. S. Larson;S. Shaik
  35. J. Am. Chem. Soc. v.100 F. Bernardi;A. Bottoni;N. D. Epiotis
  36. J. Am. Chem. Soc. v.97 N. D. Epiotis;R. L. Yates;F. Bernardi
  37. J. Am. Chem. Soc. v.95 J. Slutsky;H. Kwart
  38. J. Am. Chem. Soc. v.89 J. A. Berson;G. L. Nelson
  39. Acc. Chem. Res. v.1 J. A. Berson
  40. J. Am. Chem. Soc. v.85 H. S. Johnston;C. Parr

Cited by

  1. Topological analysis of the electron localization function applied to the study of the [1,3] sigmatropic shift of fluorine in 3-fluorpropene vol.114, pp.1, 1989, https://doi.org/10.1063/1.1328397