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A Stable Model Reference Adaptive Control With a

Generalized Adaptive Law
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Abstract

In this paper, a generalized adaptive law is proposed which uses a rational function type operator
for parameter adjustment. To satisfy the passivity condition of the adaptation block, we introduce
a constant feedback gain into the adaptation block. This adaptation scheme is applied to the model
reference adaptive control of a continuous-time, linear time-invariant, minimum-phase system whose
relative degree is 1. We prove the asymptotic stability of the output error of this adaptive system
by hyperstability method. It is shown that by digital computer simulations this law can give a
better output error transient response in some cases than the conventional gradient adaptive law.
And the output error responses for the several types of the proposed adaptation law are examined
in the presence of a kind of unmodeled dynamics.

I. Introduction , . . .
a special class of nonlinear time-varying systems.

Since the most critical problem arising in adaptive

Adaptive control systems can be considered as i S
systems is to assure the global stability of them,

N there have been many results of stability for
v TIEASE - various structures of adaptive controllers and
(Dept. of Elec. Eng. Seoul Nat’l Univ.) adaptive algorithms in both continuous and dis-
BEXHT 19894 48 120 crete time versions. In the approaches of system
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stability analysis, the Lyapunov approach is well
known and has been applied to most adaptive
system[B] elh12l.  yys approach was sometimes
used for the design of adaptive controllers to
guarantee the stability of adaptive systems“”.

When the Lyapunov’s method is employed, the
stability of a set of error differential equations is
investigated by a suitable choice of Lyapunov
function candidate. However, the Lyapunov
function cannot be easily found for most cases
except some simple or special cases. Hence most
model reference adaptive control problems have
been solved by rather a simple and special adaptive
law.

The difficulty of finding appropriate Lyapunov
functions for adaptive systems has led some
researchers to the hyperstability approach which
gives a greater flexibility in choosing adaptive
laws. In this point of view, Narendra and Val-
avani ['®! showed that the hyperstability could be
successfully applied to adaptive systems and that
two approaches gave the same results when a
simple gradient adaptation algorithm was used
with an additional feedback.

In adaptive control systems, the strictly positive
realness plays an important role in both stability
analysis methods. Since the error model resulting
from given adaptive control structure mainly
determines the evolution of the error between
plant and model, it is critical to the stability
whether or not the error transfer function is
strictly positive real. In general, in the model
reference adaptive control, model cannot have an
arbitrary transfer function irrespective of the plant
transfer function because the transfer function of
the plant together with a controller must match
that of the model asymptotically. Thus we should
take into account the notion of relative degree
which is denoted by n* 2 n-m (the plant has
‘n’ poles and ‘m’ zeros).

For relative degreen n* = 1, however, since the
model transfer function may be chosen strictly
positive real, a stable adaptive control objective
can be gained with a typical adaptive control
structure. Thus we only consider this case because
there is no need to introduce a stable filter into
the control structure to make the resulting transfer
function strictly positive real. In this case, the
error transfer function can be made strictly positi-
ve real and hence one can readily apply the hyper-
stability method to design stable adaptive laws.
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The design of adaptive laws based on hyper-
stability was tried for a class of discrete-time
linear time-invariant systems(14] and applied to a
robust adaptive control in a bounded external
disturbance environment!15] | But was only
considered in {4 the case where a second-order
operator was used for adaptation algorithm.
Moreover the boundedness of auxiliary signals
were not explicitly discussed and consequently
the proof of the asymptotic stability was incom-
plete.

Motivated by these hyperstability approaches,
we suggest a generalized adaptive law for con-
tinuous-time linear time-invariant systems in the
sense that this employs a wider class of linear
operators in it. And we prove the asymptotic
stability of adaptive systems having this type of
adaptive laws by the hyperstability method.

This paper consists of four sections. In section
I some definitions and theorems of hyperstability
are introduced and a preliminary lemma is establi-
shed. Section W deals a basic adaptive controller
with a simple illustrative proposed adaptation
algorithm. The main results based on hyperstab-
ility are established in this section. Section IV
shows some digital computer simulation results.

II. Hyperstability in Adaptive Systems

Hyperstability approach to the model reference
adaptive control has been used as an alternative to
Lyapunov’s method by authors such as Landau [3] -
Literatures have also been published[”m [411s)
about the interpretation of the original Popov’s
theory for the application of it to adaptive
systems. To proceed with the hyperstability in
adaptive systems, consider a continuous-time,
linear time-invariant, completely controllable and
observable system Bl with single input u(t) and
single output y(t) described by

x (t) = Ax (1) +bu (1)
y(t) =c"x(t) +du(t) (1)

where x(t) € R™ is a state vector and A € Rle'l"l

beRM ce Rm, and d is a scalar. And the block
Bl under consideration is to be connected in a
negative feedback configuration, as shown in
Fig. 1, by a nonlinear time-verying block B2 which
has an input y(t) and an output -u(t) with the
inequality (this corresponds to the passivity
condition)
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/‘Tu(t)y(t)dtsa2 (2)

where & is an arbitrary constant independent of
Tforall T=0.

Fig.1. Negative feedback connection of two
blocks

Then the hyperstability of Bl is defined by the
property which requires that the state x(t) be
bounded for the input u(t) satisfying the inequ-
ality (2).

Definition 1 [5]

The feedforward block B1 defined by equation
(1) is hyperstable if there exists a positive constant
Y such that all the solution x(t) of system (1)
satisfies

Ix@®)h=<y(hx(0) | +8) for all t=20  (3)
for any block B2 satisfying the inequality (2).

Definition 2 [5]
The feedforward block B1 is asymptotically
hyperstable if it is hyperstable and satisfies

,]{.IE x(t)=0 (4)

for any block B2 which has a bounded u(t)
satisfying the inequality (2).

Two important hyperstability theorems are as
follows:

Theorem 1 [10]
The system B1 (1) is hyperstable if and only if
the transfer function of the block B1

W(s)=d+c"(sI—A)'b (5)

is positive real for the input u(t) satisfying the
inequality (2).

87 ETILBERNEE ¥ 26% % 8 %

Theorem 2

Consider a nonlinear time-varying block B2
connected as in Fig. 1. Suppose that the block
B2 can be described by the input-output relation
for a piecewise continuous function vector { (t) €
R™ forallt =0

u(t)=—¢T (W H(s) 12 () y () (6)

where the operator H(s) is a positive real operator
having a simple pole at s=0. (With an abuse of
notation, we denote H(s) as a transfer function
or as a linear operator ins £ d/dt according to the
context.) And suppose that u(t) can also be
expressed in terms of a measurable state variable
m
nE R as

u(t) =2"(t) () —=d, " (1) £ (W) y(t)
() =—H, () Ity (t)] (7)

where H(s) = d; + ¢; 7 (sT-A;) by = d, + Hy(s)
for appropriate dimensional matrix Aj;, vectors
by, €1, and a scalar d,. (Again, I represents a
unity matrix or an identity transfer matrix of
appropriate dimension.)

Then the closed loop system is hyperstable if
the transfer function of the block B1 is strictly
positive real. Furthermore if ¢ (t) is bounded,
then the block B1 is asymptotically hyperstable.

(Proof)

Since the operator H(s) is positive real, there
exists a time-invariant square matrix kernel
K(t, 7)=K(t-7) such that K(t-r) has the Laplace
transform matrix H(s) I and is positive definite.
Hence the Popov inequality (2) is given from equa-
tion (6) by

[ w(©)y ()de =-/T[C(t)y(t)‘]TH(s)I[(h)y(t)]dt

- [[m)ymr -
I/‘K(t—r)f(r)y(r)drl dt <6

(8)

for an arbitrary positive constant §,, independent
of T. This with Theorem 1 implies the hyper-
stability of block Bl. In a similar way, from the
strictly positive realness of block B1, it can be
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shown (3} that for an arbitrary constant 8,
T T
fo~U(t)y(t)dt=—[4(x(t))Jg ~f~p(x(t),u(t))dt
=¢: (9)

with a quadratic positive definite function ¥ (x(t))
for all x (t) € R™ and a function p (x(t), u(t)) =0
for all x (t) € R™, u(t) € R, and T 0. And with
equation (7) one can show that the condition (3)
with 7 replaced for x can be satisfied by using
the property of positive realness of H(s) by
deriving the same form of relation (9). Therefore
one can see that B2 is also hyperstable. From the
lemma of Popov[13! it follows that the closed
loop system is hyperstable. If {(t) is bounded we
can find a uniformly continuous positive definite
function ¢ (x) such that

/Ta(x)dtS/Tu(t)y(t)dt, T=0, (10)

Hence, from Barbalat’s lemma, condition (4)
holds and it follows that Bl is asymptotically
hyperstable.[]

Since the hyperstability merely requires a
passive operator in the feedback path for the linear
time-invariant system B1, we can readily devise a
more flexible adaptive law as long as it governs the
block B2 with satisfying passivity conditions. To
introduce a general form of positive operator into
the adaptive laws in the feedback path, we need
a lemma.

Lemma 1
Let h(s) be a rational function of the complex

Cqr?

variable “‘s’’ as

h(s) = . S (11)

s"I_Il (s+8:)
=1

where fi is a positive real constant for i=1,2, ...,
n-1 (n 2 3). And assume that i >Bj ifi>j
fori, j=1,2,...,n-1.

Then there exists a positive constant ¢ such
that a composite function hy (s) = u + h(s) is posi-
tive real and u should be given by the inequality
as

n/2-1 1
u> k§‘ " n:even
ﬂxku yiy (ﬂx ’ﬂzku),

1=1,
1#2k+1t
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or

>(n—lr/zz:-l 1 Odd
= , ng .
a k=0 Bacir® } I}Il B —Bresr)
xiilik+l

(12)

In particular, if n=2, u should not be smaller
than 1/8, 2 for h, (s) to be positive real.

(Proof)
Since h(s) is real for real s and the residue of
the simple pole at s=0 is given by

B N (13)

1

oA
=1

So, from the definition [2] of positive realaness of
transfer function, it is sufficient of check the
satisfaction of condition that Re[h; (jw)] should
be nonnegative for any w € (- oo, o9),

Nothing that h(s) can be expanded in a partial
fraction form as
a, a,

sta s T

an_y
s+ hBn
(14)

his)= 20 4
S

where a; (i=0,1,2,...,n-1) is a real constant, one
can see that by equating equation (11) to
equation (14)

a;= 0. (15)

i
e

This implies that some negative a; ’s are present.

From the assumption, after some observations
one can sce that for n 2> 3 it is truc that a4 >0
and a,,;<0 for k=0,1,2,..., n/2-1 (when n is even)
or for k=0,1,2, ..., (n-1)/2-1 (when n is odd). In
either case a,,, Is negative and hence there
exists a positive constant u such that for any
values of w € (-9, 09),

noEt Ancs1 Boxin

k=0 ﬂ:k+1 +w

ut >0, n:even

or

m-UZ2 agc Bk

ut & Bttt >0, n:odd (16)

Since for k=0,1,..., n-1, a,,; may be represented
by in either case

(1170)
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1
7/92)“\ .ni]l (ﬂi 7/321“1)

=1,
i*¥2K+1

an)

A1 =

it follows that it is sufficient for Re[h; (jw)] to
be positive if ¢ is chosen to satisfy the inequality
(12).

For n=2 we can readily see that h, (s) becomes
positive real if u >>1/8;, 20O

The Lemma 1 is shown to be useful to design
by the hyperstability method an adaptive law
updating the parameter vector.

M. Model Reference Adaptive Control Based on
Hyperstability

A single-input single-output continuous linear
time-invariant minimum-phase plant may be
represented by a transfer function n

N» (S)

AT QT -1 ==
We (s) = (SL—Ap) ™" br=kr 73

(18)

where Wy (s) is strictly proper with monic poly-
nomials Np (s) and Dp(s) of degrees m(< n) and
n res'pectively with a constant gain parameter kp.
Assume that m,n, and the sign of kp are known.
Thus the sign of kp can be assumed to be positive.

A model that represents the desired behavior
which the controlled plant is to follow is supposed
to be described by the transfer function

N (s)

Wi (S) :C.rrn(s IiAm) ‘bm:k Dm(S)

(19)

where Nm(s) and Dm(s) are monic Hurwitz
polynomials whose degrees are m ( << n) and n
respectively with a constant gain km-

Then the adaptive control problem is to design
a controller for the plant having the properties
asymptotically

lim e, () 2.11'3 (ye (1) —ym(t)) =10 (20)

tooo

where yp (t) is the output of the plant and ym(t)
is that of the model.

Following[9], let the adaptive controller have
the following structure as shown in Fig.2. Two
auxiliary signal generators S;, S, are employed
to generate filtered signals. S; contains an (n-1)
dimensional parameter vector c(t) and S, contains

EFTREHRIE F 26% # 8 5

a parameter dy(t) and an (n-1) dimensional para-
meter vector d(t). S; and S, are described by the
differential equations

$; ()=Fs, (t)+gu(t)
w, () =c"(t) s, (1)
5, (t) =F s, (1) +gye (t)

w, (1) =do(t)ye (1) +d" (1) s, (1) 21)

where F is an (n-1)x(n-1) stable matrix and g is
an (n-1) dimensional vector. It is realized so that
(F,g) is a phase-variable canonical pair. Let us
modify slightly the control structure so that the
control input to the plant is given by

W) =" (1) L (1) —u (O T Lct)e () (22)

where e;(t) is the output error, I' = T s a
positive definite matrix. Here, 4 is a constant
satisfying the condition of Lemma 1 and the 2n-
dimensional parameter vector 6(t) is defined as

87 (1) & [eo(t), (1), dolt), d7 (1)) (23)

and composite filtered signal vectors are defined
as:

L) & [r (1), &7 (1)) (24)
) 20sT), yelt), s3(1)) (25)

which have dimensions 2n and 2n-1 respectively.

It was shown that a constant control parameter
vector 8* exists such that if 8(t) = 8* the transfer
function of the plant together with a controller
matches that of the model exactly. For this #*
the state equation may be written as a (3n-2)
dimensional vector equation

x (1) =Ac¢x(t) +be(co*r(t)] +

be (@7 (1) & () = 82(t) Tt e ()
(26)

where xT (1) 2 [xp (1), s (1), 827 (D], Xp (D)
is the state of the plant, 8(t) 2 ¢(t) + 0% and
Co* = kyy/ky, - The matrix Ag j5 5 stable (3n-2)x
(3n-2) matrix and bc is a (3n-2) dimensional
vector. These are determind by the values of

0*.
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Fig.2. A typical structure of adaptive controller,

Since when matched (or ¢ (t) = 0) the resulting
state differential equation describes a nonminimal
representation of the model, we have

)‘(f(t) =A. X/(t) +be Cog.= I'(t) 27)

where x;T(t) 2 [x (1), 51 (1), 55, T (O], x_(D)
is the state of the model, and s, , Soy are the
resulting signal vectors of sy, s, respectively when
matched. If e(t) 2 x(t)—xf(t) represents the state
error between model and plant, the error differ-
ential equation may be given by

e(t)=Ac e(t) +be (4" (1) &c(t) —
ne (1) &M MEc(t) (28)

e, (t)=hle(t)
where the transfer function of e, (t)

ke

W,(s) 2hi(sI—Ac) ! be= k

Wm (S) (29)

is strictly positive real and hcT = [ 1 00 .. 0].

For most cases a simple gradient type algorithm
has been used to update the parameter vector in
the adaptive law. It was shown [7] that this leads
to a stable adaptive control with the boundedness
of output error and parameter vector. From
Theorem 2, we can choose a generalized adaptive
law which includes higher order integrators for
8 (t) instead of a mere pure integrator.

To get the continuous-time counterpart of [14]
we first consider a second-order adaptive law
represented by

—1
B(t)=m[r Zc(e (V)] (30)

(1172)
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Or equivalently

$()=—b, $(t) ~ Tt e (1) (31
where b; is a positive real constant. The error
model for equations (28) and (30) is shown in

Fig. 3. Note that the parameter vector 8(t) can
be decomposed into 04 (t) and 0, (t) as

g(t) =8, (1) +8, (1) (32)
where

6, ()= —T te(e (v

80 = by 8,0+ 1 I £ (1) e 1), (33)

Fig.3. The error model with a second-order
parameter adaptation.

Theorem 3

Consider the error system (28) with the ada-
ptive law (31). For u > 1/b;, the state error e(t)
and the parameter error ‘P..(t) are bounded. Fur-
thermore e(t) and e, () tend to zero as time goes-
to infinity.

(Proof)

The hyperstability of this system can be dir-
ectly obtained by applying the Theorem 2. But to
give an insight for Theorem 2 and to prove the
asymptotic hyperstability, we show the procedure
in some detail. If we define w(t) 2 ch(t)
qo(t)yu T § (e (1), for all 0<t< T with finite
T, we obtain followings after some manipulations
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/Tw(t) e, (t)dt=—

—u/ $WT (1)t

waU/wMOF*MOm

—w{[ww+—— (07

. 1 T
(wo+zm¢mﬂ

do

b vl [CON LTINS
(34)
it follows that, for finite $(0) and ¢(0),
/DT w(te, (t)dt <A (35)
where
=b—2[ 0+ 50 | O+ 5500 |
H{un— [ FOrs0] 6o

Since the transfer function of B1 is strictly pos
itive real, it can be shown that by the Kalman-
Yacubovich lemma for some Q=QT >0

/”wumlmdnzgmechAT%wwermn.

0

(37

This implies that the block B1 is hyperstable
and hence e(t) is bounded. In the similar way,
from equation (34) and (37), considering that the
transfer function of B2 is positive real, ¢(t) can be
shown to be bounded. Since e(t) is bounded and
r(t) is a uniformly bounded continuous, we have
the boundedness of the plant output y_(t). As is
observed in equation (21), since the auxiliary
signal generators have eigenvalues with negative
real parts and since the transfer function of the
plant W_(s) has zeros in the open left half plane,
one can show that ¢ =(t) and u(t) are bounded.
Consequently {C = (t) e; (t) are bounded and w(t)

is also bounded. From the fact that W(s) is

strictly positive real it follows that e(t) = 0 and e,
(t)>0ast—>o0 O

(1173)
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Remark 1

The additional feedback term may be regarded
as a proportional feedback term as in (810141
In(81,  for the case where relative degree was
greater than 2, an additional feedpack positive
gain M was introduced for the purpose of the
signal-boundedness analysis and was stressed as
essential. This argument can be interpreted in this
adaptation algorithm that it should be introduced
to satisfy the condition of positive realness of
adaptation block regardless of relative degree for
the (asymptotic) hyperstability of the system.

Remark 2

As pointed out by Popov [13] a Lyapunov
function for the system (28) with adaptive law
(31) can be found with the help of equation
(34). This can be seen by the fact that Bl is
strictly positive real and strictly proper and that
the adaptive law has the passivity property. If a
Lyapunov-like function V;(e(t)) is chosen as
for some P=PT >0

Vile(®) = 3¢ (P e(v), (38)
then we can show that by the Kalman-Yacubovich

lemma

[tw(r)e, (z)dr=

%[eT<T)Qe(r>df+

2 (Pl (39)

for some Q such that AT P+PAT=.Q <0.
As stated early, from the property of the linear
operator in adaptlve law, one can find operators
: R™ - RY and g,: R™ > R asin equation
(34), such that for all ¢(t) € R™

_/:w(t)el (r)dr=—[ g (¢(7)) K

[ e tstea

Hence if a Lyapunov function candidate V(e(t),
¢ (1)) is chosen as

(40)

Vie(t), ¢(t)) =V (e(t)) 4+ (¢(1)), (41)

it can be readily shown that if 4 > 1/b,



- %eT(t)Qe(t)“g,W’(t)) =0. (2

This leads to the same conclusion as Theorem 3.

Now we are going to generalize the adaptive law
used in Theorem 3. Let us choose a monic
Hurwitz polynomial P(s) of degree r ( > 1) such
that the equation P(s)=0 has positive real distinct
roots (this condition seems not so restricitive).
If we choose the adaptive law as

(P(s)=P(0)J18(t)=—T ¢ (e, (1) (43)

and choose the control input u(t) as equation (22),
we still have the same error equations (28). Note
that [P(s)-P(0)] contains a pure integrator which
enables us to obtain the derivatives of 6(t) by
known signals. Hence we have an error model
which gives an output error e, (t) as

e () =W,(s) (¢"(1) L () —p e, (1) -
10N SLIONR (44)

This error model can be thought as an equivalent
system that uses an adaptive law

1
6c(t) =| pt m]l (=TI ¢c(We (t) )

za(t) —ul gc (t) € (L) (45)
and generates the plant input u(t) as
u (1) =02 (1) Lc (1), (46)

This equivalent error model is shown in Fig. 4.

B
0 -+ ! e (t)
I W, (s) ]—
A s e e e e
! |
| um :}-Q— |
| |
0N 5 1 o
Y P (s)—P(0) I
e . e |

Fig.4. The equivalent error model with a positive

real operator in the parameter adaptation.
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Remark 3

Note that the adaptation law of Narendra (9!
is a special form of this algorithm if P(s) is chosen
as ‘“‘sta’”” where a is a positive constant. Since a
choice of P(s) does not alter the control structure
one can select P(s) according to the design objec-
tives. If kp is known (or equivalently if ky=k )
€, can be fixed as 1. Thus the parameter vector
may be of dimension 2n-1.

Now we state the main result for a generalized
adaptive laws giving the error mode] (44).

23

Theorem 4

Consider the error system described by equ-
ations(28),(29) with the adaptive law (43). For u
satisfying the condition of Lemma 1 for given P(s),
the state error e(t) and the parameter error ¢(t) are
bounded. Furthermore, all the signals in the
system are bounded and e(t) and e, (t) tend to
zero ast > o<

(Proof)

As shown in Fig. 4., the error model (44)
represents two blocks which are connected in the
form of negative feedback with zero external
input. Since the transfer function of block B1 is
strictly positive real and the feedback path block
B2 has a positive real operator for the chosen u,
the block Bl is hyperstable and therefore the
overall system is hyperstable from Theorem 2.
This implies that e(t) and ¢(t) are bounded, and
e, (t) is bounded. The reaminings are followed
as in the proof of Theorem 3.

IV. Computer Simulation Results

In this section we present some simulation
results for a second order continuous-time linear
time-invariant system for four cases. The plant
was assumed minimum phase and of relative
Yegree 1. The simulations were done on the IBM
personal computer and the integral operation
was simulated by the Runge-Kutta algorithm. The
plant and the model transfer functions for the
four cases are chosen as shown in Table 1.

In the cases (a) and (b), unstable plants were
used but in other cases stable plants wer
employed. In all cases the model was fixed to be
strictly positive real. When k, was assumed
known it was set 1 so that kp, = km=1. When it
was supposed to be unknown it was assumed 2.
Four illustrative adaptive laws are employed for

(1174)
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Table 1. The transfer functions of the plant and
the model.

19894 8H BT ILBEHRGE

Case Plant W, (s) Model W, (s)

s+0.5
s'—2s+1.25

2(s+0.5)
s*—2s+1.25

s+0.5
s?+2.55s+1.5

2(s+0.5)
s’+2.55+1.5

s+0. 56
s*+1.3s+0.4

Table 2. Operators and corresponding x’ for

each type.
Type operator H(s) u
0 1/s 0
1 1/s 0.12
2 1/s(s+3) 0.12
3 1/s(s+3)(s+4) 0.2
simulations. Type O represents the conventional

simple gradient adaptive law. For Types 1, 2, and
3, the operators H(s)=1/[P(s)-P(0)] of the form
a rational function of ‘s and corresponding u’s
are tabulated in Table 2.

For each case, four types of adaptive laws
were applied. The output errors are drawn
together in Fig. 5. Since Wm(s) has a stable
zero at s=-0.56, the auxiliary signal generators
were chosen to have a factor (s+0.56) in the
characteristic polynomial. The reference input
r(t) in each case was set to a square wave with an
amplitude of 4 units and frequency 1/12 Hz. The
constant parameter adaptation gain matrix I" was
chosen a unity matrix.

The simulation results for the proposed
adaptive law show that this law gives a bounded
output error and a bounded parameter vector.
And it is observed that Type 0 shows a severe
oscillatory transient response but the proposed
law doesn’t. In the case where no unmodeled
dynamics are present, Type 1 exhibit the best
output error responses. A slower convergence rate
can be observed as the degree of P(s) increases.
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unmodeled dynamics are present.

In general, a higher order integrator causes a
slower convergence rate. But the convergence
rate can be recovered to a competitive one by
raising the magnitude of the adaptation gain
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matrix.

And it is observed in this simulation that a still
better output error transient response may be
obtained if a 2n-dimensional parameter adapt-
ation is used. This implies that, in adddition to
the filtering of high frequency components of the
reference input, a gradual increase of the control
input can give a better transient response. Ex-
tended time simulations exhibit that the output
error e;(t) goes to O as time elapses in all types of
adaptive law used.

On the other hand, if unmodeled dynamics are
present, a higher order integrator may function as
a sharper lowpass filter and gives a better output
response and/or a robustness of adaptive control.
A simulation result for this situation is shown in
Fig. 6. The transfer function of plant is given by
104 (s+0.5)/{(s+1) (s+1.5) (s* +20s+104)]. Type 2
shows the best results in the sense of a fast con-
vergence and a smaller output error magnitude.
Thus it should be considered in selecting P(s)
that there is a compromise between the con-
vergence rate of output error and the magnitude
of output error (or robustness).

V. Conclusions

In this paper, a generalized adaptive law is pro-
posed which uses a rational function type operator
for parameter adjustment. To satisfy the passivity
condition of the adaptation block, we introduce a
constant feedback gain into the adaptation block.
This adaptation scheme is applied to the model
reference adaptive control of a continuous-time,
linear time-invariant, minimum-phase system
whose relative degree is 1. We prove the asym-
ptotic stability of the output error of this adap-
tive system by byperstability method. It is shown
that by digital computer simulations this law can
give a better output error transient response in
some cases than the conventional gradient adap-
tive law. And the output error responses for the
several types of the proposed adaptation law are
examined in the presence of a kind of unmodeled
dynamics. An extension of this algorithm is
expected to arbitrary relative-degree systems.
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