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e . Total strain (e=e,+e)
Nomenclature ey - Static strain
m  Mass per unit length of the cable e; : Dynamic strain
m, - Added mass per unit length of the ca- Cu - Normal drag coefficient of circular cylin-
ble ders
E ! Young’s modulus of the cable Cus - Tangential drag coefficient of circular cy-
a ! Cross-sectional area of the cable linders
D, : Unstretched diameter of the cable F,, * Normal static drag force per unit length
W,  Weight per unit length of the cable of the cable
B, ! Buoyancy force per unit length of the ca- F., : Tangential static drag force per unit le-
ble ngth of the cable
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. Normal dynamic drag force per unit le-

ngth of the cable

. Tangential dynamic drag force per unit

length of the cable

: Total tension of the cable (T=Ty+ Ty

. Static tension of the cable

. Dynamic tension of the cable

. Pretension at the top of the cable

. Lagrangian coordinate

. Tangential displacement of the cable

I Normal displacement of the cable

. Horizontal axis of a Cartesian coordinate

System

: Vertical axis of a Cartesian coordinate

system

> Total angle of the cable (¢=do+ 1)

. Static angle of the cable

: Dynamic angle of the cable

. Current velocity assumed to be paralled

to the x-axis

. Velocity of the buoy

- Water density

- Mass of the buoy

. Added mass of the buoy

. Drag coefficient of a sphere

. Diameter of the buoy

- Buoyancy of the buoy

. Weight of the buoy

. Total drag force of the buoy

. x-component of the total drag force to

the buoy

of the total drag force of
the buoy

of the static drag force of
the buoy

of the static drag force of
the buoy

of the dynamic drag force
of the buoy

of the dynamic drag force

of the buoy

> Resultant static force of the buoy
. Angle of the resultant static force Fr with

the x-axis
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1. Introduction

The recent move by the offshore industry to-
ward deeper water, made mooring systems very
important, and created an interest in studying
such systems. Semi-submersibles, for example,
are normally positioned with a multi-leg mooring
system.

Researchers have studied the nonlinear dyna-
mics of a mooring line in various coordinate sys-
tems. Bliek derived the cable dynamic equations
by considering the kinematics and dynamics of a
mooring line in three dimensions”. Shin has ex-
tended the dynamic equations derived by Bliek,
using a coordinate system which is based on the
moving configuration (dynamic reference) of a
mooring line®.

The main function of a mooring system is to
provide a holding force. Mooring lines supported
by intermediate buoys appear to be best suited for
deep water applications, where the weight of the
line itself is an important factor. By adding buoys
to the mooring line, it is possible to reduce the
maximum tensile force and therefore increase its
capability for carrying external loads reducing the
diameter™ ?,

So far, most analyses are restricted to a cable
without buoys and only a few papers refer to the
mooring line with buoys" * ® #,

In this paper, the nonlinear static and lineari-
zed dynamic equations of a mooring line with
buoys are derived”. The dynamic motions are as-
sumed to be small oscillations around a mean po-
sition, which is the static configurations. The sta-
tic equations are solved numerically using the
Runge-Kutta method. A set of linearized partial
differential equations are solved using the Finite
Centered Difference method with linearized dam-
ping coefficients.

Terminal impedances, which are sometimes ca-
lled transfer functions or complex frequency res-
ponse functions, are calculated and natural fre-
quencies of the cable-buoy system are obtained.
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2. Statics

We assume that a buoy is connected to the ca-
ble by a hinge at the attachment point. At an at-
tachment point, we should consider equilibrium of
the forces due to the buoy and the forces from
the adjacent cable elements (Fig. 1). Except at end
points, the following static equations along the
mooring line are derived from the static equilib-
rium condition of an infinitesimal segment of the
cable (Fig. 2).

To 9% = (=B, cosout Full+ )
ds 2
dT,
S
dx
ds
dy
ds

€
- = (wo— By sino,—F(1+ 2)

_ = cos@y - (1+ey)

= singg * (11 eg) reeeereereneens (1)

Also the following static continuity conditions at
an attachment point are as follows (Fig. 1).

To cosdy™ = To"cosdy™ + Dy
Toisinq)[)i = T0+Sin¢()++Bh_Wh+D)hs

X =X

u

————

current

Fig. 1 Static forces at an attachment point

3. Dynamics

The 2-dimensional, linearized equations of mo-
tion with nonlinear drag force terms of the cable,
whose static configuration is 2-dimensional, exp-
ressed along the local tangential and normal dire-
ctions are obtained from considering the dynamic

equilibrium of the cable segment* 7 . (see Figures
2 and 3).

Fig. 2 Forces on a cable segement

dynemic
configuration

static
configuration

Fig. 3 Dynamic motion
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o _ o dw Ty
os 9 ds EA
0q doo
T + - - + )
2s ds 0i(1+ey)
................................................ ( 3 )
with
o= ¢ t+ O
= 7 —— sing, + - cost,
_ 0 d .
Vo= *;t) coso;, + aiL sing,
M=m+tm, ceieriiiniiieineaaann. (4)
Boundary conditions :
p(0, t) =0 q©, ) =0
D= h(t) cosl®ow,—8)  ali)=-h(®) sin(dow, —0)
................................................. ( 5 )
Initial conditions ;
PO =HE P (o) =)
ot
q(s,0) =f.(s) 94, (5,0) =fy(s)
ot
................................................ ( 6 )

where fi(s), fis), fi(s) and fi(s) are arbitrary
functions of the Lagrangian coordinates and h(t)
is an excitation displacement imposed on the top
of the cable (Fig.4),

y ]
q hY)
SeL ”
Depth
S=0
]
VA /4444444444444

Fig.4 Excitation and Largrangian coordinates of
a cable with no attached buoys

3.1 Drag Forces on a Submerged Buoy

We assume that the submerged intermediate
buoy is fixed on the cable, and we do not allow

buoy rotation about the attachment point. The
hydrodynamic forces on the buoy are described
by a Morison type loading, based on the relative
motions between the buoy and the surrounding
fluid. In order to simplify the dynamic problem,
the incident current velocity is assumed to be pa-
rallel to the x-axis (Then, D, = 0).

The drag forces on a submerged buoy are des-
cribed as follows ; (see Fig. 5)

Fig. 5 Static forces at an attachment point

1 == e
D’I‘: 2 pwczsp ;[ Dzh(U _V) ’ U-Vv |

The total drag force is decomposed into two
components

D.,= Dy cosy Dy, =Dy siny
with U=U,0) vy=tan’ Ve
. U—-V,
V=(, V)

Therefore the dynamic drag forces on a buoy are
obtained from (8) as .

Dubi = Dis — Dins
Dupg = Dy trrreererereemmerennneneenn (9)

with

1 moo
ths = 2 - p\\Csp 74” ZhUz

3.2 Dynamic Equations of a Submerged In-
termediate Buoy

From the dynamic equilibrium condition at an
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attachment point, we obtain the following equa-

tions -

mu%=-apk+ T cosdp*-T cosdp + D,
myy=-ayy + T sino™-T “sind~ + B,-W,+D,,

X X

The simplified dynamic equations with nonli-
near drag force terms at an attachment point (Fig.
5) by substituting T=T,+T; and ¢=¢,+ ¢4 in
(10), subtracting the relations (2) and (9) and ne-
glecting higher order terms (T, d” and T,” d-,

etc).

_’(E‘}'W i 0 T()d(D()/dS
ds
Ao _ dw  dTo/ds
dS T()dS T()
dp 1
—= . 0
ds EA
dq
o 0 1+e(|
L ds - L

(my,+a,)%=T:" cosd " — Ty ¢ 'sino,” — Ty
€os®o + Ty 04 sindg, + Dy

(myta)y=Ty sind" + Ty ¢4 cosp,” — Ty
sing, —Te s cosdn” + Dy

X =x
vy =y
................................................ (11)
with
X=p cosh,—(q sind,
Y=p SiNQG,+q COSP, *-rorrrrrerrees (12)

4. Frequency Domain Analysis

We assume that all dynamic quantities vary si-
nusoidally with time and we introduce the equi-
valent linearized damping coefficient in order to

linearize nonlinear fluid drag forces acting on the

the cable segment ?.

op . 4
Fp: *bp 8t bp:prn: D *‘37 wP.
(for small current)
Fo= b0 b,=pCow D w0
q q ot . g = Pwoin 3 Ja

Therefore we can construct the following matrix
equation from the cable dynamic equations (3)
using the equivalent damping coefficient.
Boundary Conditions are obtained from (5).

—me’ + wb,i 0 T,
1 ,
0 - (— Mo+ wbgi) o | (14)
Ty
ddo
0 ds p
doo
Cds 0 J 19
p@)=0 p(L)=h.cos(¢uww, —6)
q(O) =0 CI(L) = haSin((Do wop e)

Where h, is the amplitude of h(t) in case of har-

monic excitation.

5. Terminal Impedances.

A concise method of describing the frequency
dependence of the amplitude and phase is to give
the complex frequency response functions S(w).

When the upper end of the cable is excited by
an externally imposed harmonic motion the moo-
ring line terminal impedances are defined in the

following way (Fig. 6)%.
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Fig.6 Terminal impedances

Sidw) So(w)] [x F,
= - (16)
Six(w) Sy)'(w) y F,
where,
x = Complex amplitude motion, horizon-
tal direction
y = Complex amplitude motion, vertical
direction
F. = Complex amplitude force, horizontal
direction
Fy, = Complex amplitude force, vertical

direction.

At the top of the cable, sinusoidal motions in
the x-direction and the y-direction are imposed.
Then the dynamic forces at the top are obtained

as:
Su=[Tu * cosdy— Ty - singo * oul A,
Su=L[Tu * sino+ Ty * cosdy * 0111 A,
Sy =LTi * cosdy— T, * sing, * Pz A,
Syy:[le . Sin(Do+T(; * Ccosdy * d)lZ]/Ay
................................................ an

Where, Ti(T:;) and ¢n(¢12) are the dynamic te-
nsion and the dynamic angle, respectively, caused
by external motion in the x(y)-direction.

A, and A, are the external motion given at the
top of the cable.

6. Numerical Applications

The static equations (1) are solved numerically
using the Runge-Kutta method. A set of lineari-
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zed partial differential equations, which consist of
the dynamic equations (3) and appropriate boun-
dary conditions (5), are solved using the Finite
Centered Difference method with linearized dam-
ping coefficients. Natural frequencies are calcula-
ted in addition to the static configurations and te-
rminal impedance matrices.

The principal parameters of the inclined cable
are shown in Table 1. For the convenience of co-
mputations, we assume that the buoyancy of a
buoy is much larger than its weight and the total
buoyancy force of buoys is equal to the total wei-
ght of the cable in water. The excitation is impo-
sed on the top of the cable in the horizontal dire-
ction.

Table 1 Principal parameters of the inclined ca-

ble
Length= 700m Mass=49.24kef,/'m |
Weight=425.31 N/ m Dia=0.09m 1
' Depth=400m Ulcurrent)=1m,s

! Pretension=>500000N Added mass=6.5kgf,”'m i
(of cable) \

The static configuration of the inclined cable
without buoys is shown in Fig. 7, and Figures 10
and 15 show the cable-buoy systems with one
buoy and two buoys respectively.

Figures 8 and 9 show the real part and imagi-
nary part respectively, of the terminal impedances
(complex frequency responses) of the inclined ca-
ble without buoy, which denotes the top tensile
force caused by the excitation with unit ampli-
tude.

Terminal impedances of the cable with a buoy
are shown in Figures 11 to 14. Also, terminal im-
pedances of the cable with two buoys are shown
in Figures 16 to 18.

The complex frequency response S, at w=0,
specially, denotes the holding force of the cable-
buoy system and the calculated S,, are shown in
Table 2.

Figures 11, 12 and 16 show the natural freque-
ncies of the cable-buoy system with a boy and
two buoys, respectively and the results are sum-
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marized in Table 2.

Table 2 Natural frequencies and holding forces

Cgise‘ . ‘ |
l Without buoy * 1 buoy ' 2 buoys

1 0.7379%ad,/s) | 04156 03822

®2 ' 10803 0.8669 09809

|
©3 15127 f 16319 ' 1.3633

[Sw0=0_ 122647(N/m) | 273637 787606
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Fig. 7 Static configuration . without buoy, non-
zero damping
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Fig. 8 Real part of S, : without buoy, non-zero
damping
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Fig. 9 Imaginary part of S, . without buoy, non-
zero damping
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Fig. 12 (Repeated), S, ' 1 bouy, no damping(natu-
ral frequency)
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Fig. 13 Real part of S, 1 buoy, non-zero dam-
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Fig. 14 Imaginary part of S,, .1 buoy non-zero
damping
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Fig. 15 Static configuration . 2 buoys, non-zero
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Fig. 18 Imaginary part of S, .2 bouys, non-zero
damping

7. Conclusions

As the number of buoys increases, the holding
force (S.«, ®=0) in Table 2 increases and, there-
fore, it is possible to carry larger external loads.

The natural frequencies of a mooring line with
buoys are smaller than those of a corresponding
mooring line without buoys. Such a decrease in
natural frequencies may be helpful or not in the
dynamic behaviour of the mooring line, depending
upon the surrounding ocean conditions.

Finally, we can see that the cable-buoy systems
are very useful to solve the problems associated
with the larger weight of the mooring line.
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