{Research Paper) Journal of the Korean
Statistical Society

Vol. 18, No. 2, 1989
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One-Way Random Effect Models
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ABSTRACT

In the one—way random effect model, we often estimate the variance components
by the ANOV A method and then estimate the population mean. When there are only
two distinct group sizes, the conventional mean estimator is represented as a weighted
average of two normal means with weights being the function of variance component
estimators. In this paper, we will study a method which can compute the exact vari-
ance of the mean estimator when we set the negative variance component estimate

to zero.
1. Introduction

In the one—way random effect model, if the values of the variance components are
known, we can obtain the best linear unbiased estimator (BLUE) of the population mean.
However, the values of the variance components are usually unknown, In this case, we
often estimate the variance components by the ANOV A method, and then, regarding the
estimates as the true values, we estimate the populaton mean. For the one—way random
effect model, Swallow (1981)and Swallow and Monahan (1984 )conducted the Monte Carlo
comparisions of the ANOVA estimators and other variance components estimators and
found that the ANOVA estimators are adequate unless the inter—class correlation coef-
ficient #>0.5. In addition to this, they have other appealing properties: they are familiar,
easy to compute, and are unbiased, Hence, it would be interesting to develop a method
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with which we can compute the exact variance of the mean estimator with the variance
components being estimated by the ANOV A method.

Khatri and Shah(1975) introduced a method for computing the exact variance of the
combined inter—and intra—block estimates of treatment effects in incomplete block
designs. Their method could be used for computing the exact variance of the estimator
of the mean in the one—way random effect model when there are only two distinct group
sizes. However, their expression is the infinite sum of the complicated terms involving
incomplete Beta functions and one dimensinonal integrations. Seely, El— Arish and Lee
(1989) represents the exact variance as a finite sum of one —dimensional integrations. One
disavantage of both of these methods is that it cannot be used when the variance comp-
onents are truncated. However, in an experimental situation, it is common practice to set
the negative variance component estimate to zero, Hence, in this paper, we will develop
a method which can be used for computing the exact variance of the mean estimator in
the case of truncating of the variance component estimates when there are two distinct

group sizes,

2. The Problem Setting
Consider the one—way random effects model with two distinct group sizes. Suppose
that there are t different groups separated into two classes in such a way that the /th class

consists of m, groups, and that each group in the class has n, observations. Thus, we have
t=m,;+m, groups and n=mn,+m,n, observations. We can express this model as,

qu=#+ &y +etjk; 7::1,2, ]:], ey 1M k=1,...,n,,

where the a; and e;; are independent random variables with a, ~N(0,63) and i~
N(0,a2). Let 7=a2+aZ and p=a2 / x. When # is known, the BLUE can be written as

Q(P)=?_.W;'(P)}_’i, (1.1)
where wi(p)=[mn; / {nie+(1-p)}1/ [Smn; / {no+(1—p)}] and 7= T3y / (miny).

In practice, ¢ is usually unkown. The ANOV A estimatiors of variance cémponents are
obtained from the ususal between and within the sum of squares,

SSA= 3 ]Z N(Yy -¥)*= 2 3 n(¥,-5)+ 3 mn,(5.-7)?,
i J i
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and SSE: 'Z ’Z kz (Yijk-yﬁ)zy
where = 3 vy /0, ¥= 3 3 X v/ n. Let S1= 2wy, S2= ;Z ne(ar ¥ )
i 7

and S3=3. min;(¥,—y)*= (mnmn, / n) (¥,—7,)°. Note that SSA=S1 +S2 +S3 . Then
it can be shown that SSE, S1,S2 and S3 are independent random variables with distribu-
tions;

SSE~r(1—p)X i_y

S1~n{np+(1—p)} X &v

S2~n{nLe+(1—£)} X1
and S3~={(nn;t / n)p+(1—p)}.

The ANOVA estimator of o2 and 042 is (see Searle, 1971, page 474),
se’=SSE / (n—t),
and sa? ={SSA—(t—1)se*} / {n— (mn>+m.n;?) / n}. (1. 2)

Note that the equation(1.1) is equivalent to
2(P)=w(P) (V:—72)+72,

where w,(p)= (mynn.ea*+myn,ee?) / ( n,N,tos’+noe’)=1—m;, /t+ {mlmz( = nz)"ez} / {t
(nn.tes*+noe?)}. Hence, if we replace the variance components by their estimates, we
have

#(P)=W(S1S2,(¥:—V>)", ) (31— ¥2) +7¥a, (1.3)

where W (S1,S2,(7,—¥2)%8e") =1—m, / t+o0se’ / (nn.tsy®+nse?)
=1—m, / t4ose’ / (pS1+pS2+q(¥,—y.)*+rse?), o=mm,(n,—n,) / t, p=nn;t / {n— (myn,*
+m.n?) / n}, g=n/n,'mm,t / {n*— (m;n’+m,n?) Jand r=n—nn,t(t—1) / {n— (mn’+m,

n?) /n}.

From the above expression, #(P) is represented as the combined estimator of two
normal means with the weight of W being the function of the quadratic forms of obser-
vations. Hence, Khatri and Shah’s method(1975) is applicable to compute the exact var-
iance of 2(p) when there are two distinct group sizes, Seely et al.(1989) derived another
representation for the exact variance of #(#) using the canonical forms. Their method
can be applicable to general cases without any restriction on group sizes,

The ANOVA estimate se? can take a negative value. In this case, it is a common prac-
tice to truncate a negative estimate to zero, However, both of the above two methods
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cannot be used when variance component estimates are truncated. In this paper, we will
develop a method to overcome this problem. However, one restriction of the new method
is that it can be used only when there are two distinct group sizes.

The problem of combining two normal means is formulated as(1.3), and therefore, the
new method can be applicable to compute the exact variance of the combined estimator
even in the case of truncating a negative variance component estimate at zero.

3. The Main Result
Let Y be a p—dimensional random vector with distribution,
Y~N(@]),

where I, denotes the p—dimensional identity matrix. Let U=Y'Y. Lee(1987) showed the
following Theorem:

Theorem 1. Suppose we have two estimatiors for g, ;=Y +g,(U)Y and g,=Y+g,(
U)Y. If functions g, and g, are differentiable and the estimators, g, and g, have finite
mean squared error risks, then the estimator of the form

6=Lu<wbr+Lu>ube

where I , is an indicator function and u is a positive constant,
has the risk,

E{(6—8)'(6—8) }=E[lu<w ¢ :(U)+Lu>u #.(U)]
+4u(g(u) —g (W)f(u),

where ¢ ,(U)=p-+g.(U)?U+2pg.(U)+4g/(U)U, g/ is the derivative of g; and f is the
density function of U.

Let Y be a p—dimensional random vector with the distribution Y~N(g,6°15) and V=
{(Y—A)(Y—A), where A is a p—dimensional constant vector. Suppose we have two
. estimatiors for g, f;=(14g,(V))(Y—A)+A and ;= (1+g,(V))(Y—A)+A. Then, from
Theorem 1, we have the following Corollary.

Corollary 1. Let 4=Iv<v) &i+Lv>v) &. If g and g, are differentiable and the estima-
tors, g, and g, have finite mean squared error risks, then,
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E{(5—6)(6--9)}= E[lven(V)+1vsy ¢(V)]
+40%v (g, (v) —gi (v ) E(v),

where @, (V)= pe*+g:(V)?V+2pg,(V)e*+4g/(V)Vs® and f is the density function of V.

Proof. Let Z=(Y—A) /a, Then Z is a random vector with the distribution Z~N(v,Ip),
where v=(9—A) / a. By applying Theorem 1 to Z, we can have the desired result. B8
Now consider the estimator of the form(1.3),

.‘:(;)—_‘W(Sl, S2, (7,:—¥2)% Sez)(-g’l—;z)'f'?z

Note that the condition sa2<0 is equivalent to (¥,—¥.)*<D(51,52,s¢*), where D(S1,82,s¢%)
={(t—1)se*—S1-S2}n/ (nn;mm,). For notational convenience, we will denote functions
W) and D()as W and D without specifying the arguments. If we set the negative est-
imate s,2 to zero, the estimator 2(3) becomes

;(2):I(VSD)[(1—~m2n2 / 1'1) (?1_?2)‘}'-}72]+I(V>D)[W(§1"§z)+—§_’2],

where V=(¥,—7,)% Note that when V<D, z(#) becomes the over-all mean y. Since y,
~N({(z,0%), where 6>=ag? / m,-+ae’ / myn,, we have the following Theorem.

Theorem 2. Var(z(?))={Iv<opr+lvspr@:},

where @,= (m,n, / n)?V+(m;n,—m,n,)e*/ n, ;= (m,—m,)s* / t+(m, / t)*V+2(e*—m,
V /t)ose / (pS14-pS2+qV +r1se?) +0se”V (0se” —4qa?)/ (pS1+pS2+qV+rse?)? and o, p,
g and r are defined in equation(1.3).

Proof. Seely and Hogg (1982) showed that #(#) is an unbiased estimator. Hence, the
mean squared error risk is same as the variance. Set g,(V)=-mgn, /nand g,(V)=-m,/t
+o0se? / (pS14-pS2+qV+rse?). Note tat g,(D)=g,(D) Since SI, S2, s¢’, v, and y, are
independent random variables and Var(#(p))=E[E{x(?)—#)* } S1, S2, s, Va}], by

applying corollary 1 to the conditional expectation we have the desired result.
4. An Example

In this section, we will show how the Theorem 2 can be used to compute the exact
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variance ot #(p). For the sake of simplicity, we will show the case for m;=m,=1. In this
case, SI=52=0 and the z(#) becomes

2(P)=Iv<oy+lvsp) W(F—7,)+7,,

where D=ns¢*/ (min,), W=1—1(1—-C/V) /2 and C=(n,—n,)se*/ (n,n,). Hence, by

Theorem 2, we have
PN x D co oo,
Var(u(p))= 1§ { ¢ dFvdFu+ § | §, @ dFy dF

where ¢,=(n,/n)*V+(n,—n,)¢*/n and ¢,=V /4—C/2+C(C—46%) / (4V). Note that
V /x{204(1/n,+1/1n,)(1—p)}~x% and (n—2)se? / n(1—p)~a% 5, Hence, the density
functions, dFy and dFy;, can be obtained. Alternatively, we can campute the above mnte-
gration by first applying the integral by parts, In this case, the distribution function of
X* random variables can be directly obtained from IMSL subroutine MDCM.

Under the normality, the BLUE, ,2(,0), is the uniformly minimum variance unbiased
estimator and its variance attains the Cramer—Rao lower bound, In the table below, we
compute the efficiency of (@), which is Var,(z(p)) / Var,(z(p)) can be obtained by
computing the above intergration. This was conducted by Micro VAX using IMSL sub-
routine DBLIN. From the table, we can see the efficiency of z#(2) decreases as the diff-

erence between n, and n, increases.

Table 1. Efficiencies of z(p) when n,=2

0.05 0.25 0.50 0.75 0.95

1,

0.9624 0.9837  0.9926 0.9972 0.9995
0.8792 0.9554 0.9807 0.9929  0.9988
16 0.7845 0.9316 0.9714 0.9898  0.9983

5. Conclusion

In this paper, we showed a method which can be used for computing the exact variance
of the location estimator for the one—way random effect model when there are two
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distinct group sizes. Allowing the truncation of the variance components estimators makes
this problem quite complicated. However, it would be interesting to develop a method
which can be applicable to general group sizes. As in Khatri and Shah(1975), the comb-
ined estimator of the inter—and intra—block estimators is formulated as (1.3). But, their
method could not be applicable to compute the exact variance of the combined estimator
if we set a negative variance component estimate to zero. The new method can be used
for this case.
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