POST —BUCKLING ANALYSIS OF PRESTRESSED CONCRETE
BEAM—COLUMNS BY THE DISPLACEMENT CONTROL STRATEGY
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ABSTRACT

A numerical procedure based on the finite element method for the post—buckling analysis of plannar prestressed con-
crete beam —column structures is presented. Material nonlinearities such as the cracking, strain—softening and crushing
of concrete and the yielding of prestressing steel are included. Geometric nonlinearity which is an essential factor in
studying the post—buckling behavior is considered by the updated Lagrangian formulation. Incremental equilibrium
equatiors which are valid for the current material properties and deformation are set up and solved by the Newton -
Raphson iteration scheme with the unbalanced load corretion. The unloading branch of the load--displacement curve
after buckling has taken place is traced correctly by the desplacement control strategy rather than the usual load control
strategy for the solution of nonlinear equilibrium equations. Varied material properties within the frame element are con-
sidered by the layer integration scheme. In the present element formulation the shift of the neutral axis due to the con-
crete cracking is accurately accounted for by incorporating an additional internal degree of freedom for the axial dis-
placement. Numerical examples are presented to demonstrate the validity and applicability of the proposed method.
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INTRODUCTION

Prestressed concrete compression members
usually act as beam—columns due to the con-
tinuity of concrete structures. The stability
analysis of these structures is complicated due
to a number of factors which include the ma-
terial nonlinearity of constituent materials and
geometric nonlinearity. When these structures
exhibit strain—softening or snap—through the
structure stiffness matrix at some point in the
sloution path is non—positive definite(Fig. 1).
The conventional methods for solving the no-
nlinear equations with the load control strategy
are not applicable without modification. This

study presents a numerical method for tracing

{R}
A Strain-softening

Snap-through

Fig. 1. Typical Load —Displacement Response
for Structures with Non—positive
Definite Stiffness Matrix

the post—bucking behavior of planar pre-
stressed concrete beam—column structures
based on the displacement control strategy. No-
nlinear stress—strain relations for concrete and
prestressing steel are incorporated, and varied
material properties within frame elements are

considered by the layer integration scheme.
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SOLUTION OF NON—POSITIVE DEFINTE SYS-
TEM OF EQUATIONS

Various shcemes have been proposed in the
past to circumvent the difficulties which arise in
treating the non—positive definiteness of the
structure stiffness matrix and passing over the
limit point where the determinant of the stiff-
ness ma trix changes sign as at points A and B
in Fig. 1. In the figure {R} represents the load
vector and {r} reprasents the displacement vec-
tor.

Some of the numerical schemes will be re-
viewed to form the basis for the selection of a
numerical scheme to be used in the present

study.

Imposed Displacement via the Change of Inde-
pendent Variable

Argyris [1] first introduced this method and
chose the displacement rather than the load as
the independent variable. However, the loss of
symmety and the banded nature of the resuliing
stiffness matrix have placed some restrictions

on its use.

Augmenting the Stiffness Matrix

This method has been used by Whiteman et al
[2] in sloving frame type structures and later
generalized by Sharifi[3] to handle shell struc-
tures. The method involves augmenting the
structure with a set of linear generalized
springs at each of the loaded joints so that the
stiffness of the complete system, including the
generalized springs, becomes positive definite.

However, due to the coupling of all the loaded
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degress of freedom produced by the generalized
spring system, the augmented stiffness matrix
is generally a full matrix. The maximum in-
crease in the solution tme in solving the system
of equations may be as much as 25% as shown
by Sharifi[3]. The unbanded nature of the stiff-
ness matrix may also cause numerical problems
when the augmented spring stiffness is chosen
to be too large in value. On the other hand, if
the spring stiffness is chosen to be too small, it

may have little effect on the resulting stiffness.

Orthogonalizing Techniques

Bergan[4] developed an iterative scheme in
which the iteration is carried out with variable
load level. The idea i1s to adjust the external
load so that the residual is always perpendicular
to the external load. This should theoretically
give the smallest residual in the least squares
sense and hence converge quickly to the true
solution. However, Powell et al[5] have found
that the scheme does not produce consistent im-
provements in reliability and speed of con-

vergence.

Double Step Method

The solution at any instant is obtained in two
steps by solving for the displacements {r*} and
{r*} of two independent load conditions {R"}
and {R°}. The final solution is the obtained so
that a certain constraint, {C} = {0} between
the displacements{r®} and {r®}, is satisfied. In

mathematical terms :
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Equation(1) is used to solve for {r‘} and {r¢}
and equation(2) is used to solve for the load
factor a so that the constraint equation{C} =
{0} is satisfied. The matrix [K] can be non—
positive definite, provided that it is not singular.
In general, {r*} is the displacement vector due
to the unbalanced load {R"}, and {r*} is the dis-
placement vector due to some reference
external load {R°}.

Bergan[ 6] uses two different methods of iter-
ation depending on the sign of the determinant
of the stiffness matrix : if no sign change is de-
tected in two consecutive steps, conventional
Newton—Raphson iteration 1s used; when a
sign change is detected in two consecutive
steps, the direction of the external load in-
crement is reversed. However, iteration is not
performed to avoid numerical problems in the
vicinity of the limii load where the stiffness
madtrix is nearly singular.

Powell and Simons[5] use the constraint con-

dition :

ri+aré - S reeereeiitiii it (3)
for imposed deformation, where & is the pre-
scribed displacement at the n™ degree of free-

dom. This method is identical with Batoz et al

[7].

{RE}T[{I‘“}—FG{I‘”}] = ) eereereceses (4)
corresponds to the iteration with constant work
constraint. The imposed deformation of Powell
et al[ 53] does not require the exact tangent stiff-
ness to be formed, provided that the load 1is
single valued in the displacement component n.
This only involves a proper choice of the n™ dis-
placement degree of freedom to be constrained.

It has also been shown that an iteration with co-
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nstant imposed deformation yields a more rap-
idly converged solution compared to the con-
ventional iteration with constant load step. Be-
cause of the economy, speed of convergence
and the versatility to handle various kinds of
problems, this method is adopted for the numeri-

cal implementation of the present study.

Description of the Present Numerical For-

mulation

An automatic load generation based upon
limiting the n™ imposed displcement increment &
at the beginning of the displcement step 1s used.

The constraint equations are .

Il

ri+arg S for first iteration ++----- (5)

I

ra+arg 0 for subsequent 1terations

The convergence criteria can be controlled
either by the magnitude of the unbalanced load
or the ratio of the displacement increments in
successive iterations. The iterative path in the

present solution scheme can be geometrically in-

a
A

iterative path
1

> [}

terpreted as in. Fig. 2. The method, when
applied to a single degree of freedom system
with linear material properties and undergoing
a snap —through phenomenon, can be shown to
converge on the first iteration.

In the present numerical formulation, path in-
dependent state determination, instead of path
dependent state determination 1s carried out In
each iteration for the curreni state determi-
nation ; that is, the determination of element
states such as strains, stresses, or deformations
and stress resultants. This means that the state
at the end of any iteration 1s found with refer-
ence to the beginning state, then discarded. The
final state thus depends only on the beginning
state and the sum of the dispacement in-
crements for all iterations, and is independent
of the itereration path. As Powell and Simons
[5] pointed out, the reason for adopting path in-
dependent state determination is that for the
displacement control strategy the strains will
frequently not increase progressively so that the
path dependent scheme may incorrectly predict

unloading.

a

iterative path
1

3
>

'

(a) Load vs Displacement of the Unconstrained DOF (b) Load vs Displacement of the Constrained DOF

Fig. 2. Iterative Path for Imposed Displacement
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Two kinds of convergence tolerances are
used in this study;the displacement ratio
tolerance and the maximum allowed unbalanced
load. The displacement ratio tolerance is defined
as the ratio of the displacement increment for
the current iteration to the total displacement
Increment up to previous iteration of the cur-
rent displacemet step. The displacement com-
ponent to be checked i1s the maximum trans-
lation or rotation occurring on the first iteration
of the current displacement step. Between the
translational and the rotational components of
the displacement, the one which yideds the
greater ratio 1s the controlling displacement co-
mponent. If the desplacement ratio of this com-
ponent Is smaller than the displacement ratio
tolerance the iteration for the current displace-
ment step is stopped. Otherwise, the iteration
continues. By setting appropriate value of the
maximum allowed unbalnced load, excessive vi-
olation of equilibrium can be avoided. The ceil-
ing on the unmber of iterations that can be car-
ried out for each displacement step is also pro-
vided in case the above mentioned convergence
criteria cannot be satisfied.

In the present study the convergence
tolerance for changing the structure stiffness is
provided so that either the constant stiffness or
the variable stiffness iteration can be selected.
If the displacement ratio is greater than this
tolerance, then new siructure tangent stiffeness
matrix is formed based on the current state and
used for the next iteration. Otherwise, pre-
viously formed and reduced stifiness matrix is
used again. The unmber of iterations required
to arrive at the solution is affected by the value
of this tolerance. In a typical nonlinear analysis
problem the state determination phase takes up

more computer time than the stiffness for-
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mation and reduction phase. Thus, by using
variable stiffness iteration the number of
iterations required can be reduced, especially
for ultimate load analyses in which the struc-
ture tangent stifiness varies steeply. However,
for creep analyses in which the stucture tan-
gent stiffness stays essentially the same, con-
stant stiffenes iteration can ce selected for

economy.

MODELING OF MATERIAL PROPERTIES

The stress—strain curves for the concrete
and prestressing steel assumed in this study are
shown in Fig. 3(a) and Fig, 3(b), respectively.
The ascending portion of the concrete stress—

sirain curve is a parabola as originally proposed

o
A E;
1 3 Crushed
7 ¥ Teu ¢
~. N
Cracked
(a) Concrete
€y
(b) Prestressing Steel
Fig. 3. Idealized Stress —strain Curves of
Constituent Materials
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by Hognestad[8]. The moduli for the descend-
ing and horizontal staight lines are assumed to
be zero. The horizontal line protion of the curve
1s used for modeling the behaviour of the con-
fined concrete. It is assumed that the concrete
crushes when its compressive strain reaches the
ultimate compressive strain, and cracks when
its tensile stress reaches its tensile strength.
Multilinear stress—strain curve is utillzed for
the prestressing steel in this study. Load re-
versal can be modeled for both the concrete and

. .
the prestressing steel.

L.
>

r— Prestressing Steel
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(a) Element Geometry

ELEMENT FORMULATION

A planar prestressed concrete frame can be
idealized as an assemblage of planar prestressed
concrete beam-column elements. Fig. 4 shows
the beam—column element and its element de-
grees of freedom in local coordinates. Pre-
stressing tendon is idealized as a straight truss
element with constant axial force within the
element. Its location in the element is defined by
two end eccentricities e; and e; It i1s assumed
that perfect bond exists between the concrete

and the prestressing steel.

y

(b) Element Degrees of Freedom

Fig. 4. Planar Prestressed Concrete Beam —column Element

The beam —column element is defined by its
two end joints i and j, and an interior joint k
which is located at the center of the element
axis. Let u, v and 6 be the x—displacement, y—
displacement and the rotation of the joint, re-
spectively. Then the joint displacement vector
{r} of a beam—column element can be written

as follows :
{I‘} - [U], Uy, Uz, Vi, Vo, 61’ 62]T """ (6)
Let u, and v be the x—displacement and the y

—displacement of an arbitray point on the

element axis. uy and v are assumed to be para-
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bolic and cubic functions of x, respectively.
They can be expressed as functions of joint dis-
placements as follows, with the nondimensional

parameter p defined as p = x/L:

u(p) = (1—p)u+pu,+4p(l1—p)u; (7)
vip) = (1-3p*+2p*)vi+(3p*—=2p*)v,+L(p
—2p2+ PO, +L(-pP+p)l; e (8)

While the shape function for the bending defor-
mation 1s the usual Hermitian interpolation
function, the function for the axial deformation
1s parablic instead of the usual linear function.

The reason for this is that by utilizing identical
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linear variations of the axial strain for both
bending and the axial deformations more accu-
rate results are obtained for ultimate load
analyses in which nutral axis of the element
shifts due to the cracking of concrete. The in-
ternal degree of freedom u; is condensed out
statically in the element stiffness formulation
phase, so that it is not included in the global
Jjoint degrees of freedom. Adopting Bernoulli—
Navier's plane section hypothesis, the x-displace-
ment u(x, y) and the axial strain ¢(x, y) of any
point in the beam—column element can be
written as follows !

u(x,y) = uu(x)—y%%). ......... (9

e(x,y) = 2bey)  Lpdvix) ()

The second term of the equation(10) represents
the large displacement effect. It is assumed in
this study that the strain is small even though
the displacements and rotations may be large.
Equation(10) expresses nonlinear strain—dis-
placement relations and this is one of the
sources of geometric nonlinearity. Another
source is the fact that the equilibrium equations
should be set up and solved based on the de-
formed configuration rather than the original
underformed configuration as assumed in the
linear analysis.

The incremental form of the strain-—displace-
ment relations at the current state can be de-
rived {rom equations (6) to (10) as fol-

lows :

ae = [Bl{ar}+ {Ar}T[C]’[CH/_\r}(/IZD .

[B] = [~1/L, 1/L, 4(1—2p)/L, 6y(1—
2p)/L% 6y(—1+2p)/L% 2y(2-3p)/L, 2y(1—
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3p)/L] ceeenen et (12)
[C] = [0, 0, 0, 6(=p+p*)/L, 6(p—p*)/L,
(1—4p+3p*), (=2p+3p*)] +vvvvre--- (13)

Applying the principle of virtual displacements
the following form of the tangential equilibrium

equations can be derived[9].

{dR} = [KJ{dr} +eecveeeessn e (14)
[Ki] = [Ke]+[K] =eveceeereenn (15)
[Ko] = Jv[BITE[BJAV «vvceveee (16)
(Ke] = Jv[CITo[CldV «vvrceenees (17)

Equation(14)is the desired form of the tan-
gential equilibrium equations which are valid for
the current geometry and material properites.
In equation(16) E, is the tangest modulus of
elasticity of the material at the current state.
The tangent stiffness matrix[ K] consists of the
small displacement stiffness matrix[ K, which
includes the material nonlinearity and the geo-
metric stiffness matrix[K,;] which represents
the large displacement effects.

In order to account for the varied material
properites within an element over the depth of
the cross section, the cross section is divided
into a discrete number of concrete layers and
the layer integration is carried out for the cal-
culation of the stiffness matrix and elelment
stress resultants. The evaluation of [K,]is per-
formed at the center of each element since only
a reasonably good estimate of the tangent stiff-
ness matrix is required In solving nonlinear
equilibrium equations by the iterative method
with unbalanced load corrections. However, ac-
curate evaluation of the internal resisting load
is essential in the iterative scheme, thus they
are computed by a three point Gaussian quadra-

ture along the length of the beam—column
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element combined with the layer intergration
over the depth of the element. The contribution
of the prestressing steel segments is added di-
rectly treating them as one—dimensional truss
elements.

The tangential equilibrium equations for the
entire structure are assembled In the fixed glo-
bal coordinate system from the contributions of
all the elements in the structure by the direct
stiffness analysis procedure. It is to be noted
that the direction cosines of the displacement
transformation martix for each element are co-
ntinuously changing according to the current
orientation of the local element coordinate sus-

tem.

NONLINEAR ANALYSIS PROCEDURE

After imposing appropriate boundary con-
ditions, the assembled nonlinear equilibrium
equations for the structure are solved by the
displacement control strategy. Let the n™ de-
gree of freedon r, be the controlled displace-
ment component. The imposed displacement is
divided into a discrete number of displacement
increments. For each displacement step the fol-
lowing iterative procedure is carried out. At the
beginning of each step the unbalanced load vec-
tor, {R"}, the external load vector, {R¢}, and
the increment & of the controlled degree of free-

dom r, are known.

(1) Form the tangent stifness matrix for
each element based on the current geometry
and material properties. Assemble the structure
tangent stiffeness martix [K,] in global coordi-
nates using the current displacement trans-
formation matrix for each element.

(2) Solve [K ]{r*} = {R*} and [K}{r*} =
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{R*} for displacement increments{r*}due to the
unbalanced loads and the increments{r®} due to
the external loads in two separate analyses.

(3) Solve equation(5)for the load multiplier
a distingishing the first and subsequent
iterations. Then the increments of the displace-
ment vector and the load vector for the current
displacement step are {r*}+a{r®} and a{R¢}, re-
spectively. Transform the global displacement
increments into local coordinates to obtain
element end displacement increments.

(4) Compute the strain Iincrement by
equation (11) and add to the previous total to
obtain the current total strain. This is done for
each Gaussian quadrature point and concrete
layer.

(5) Add displacement increments to the pre-
vious total to get the current total joint dis-
placements {r}. Update element geometry based
on {r}, that is, update the element length and
the displacement transformation matrix.

(6) Compute stresses by the nonlinear stress
—strain law.

(7) Compute the element end forces by inte-
grating current total stresses for each element
in local coordinates. Transform them into global
coordinates using displacment transformation
matrices to assemble the internal resisting loads
{R}.

(8) Subtract{R'} {from the current total
external load vector to obtain the unbalanced
load vector{R"}.

(9) Go back to step(1).

Steps(1) to (9) are continued until the unbal-
anced loads{R"} are within allowable tolerances
and displacement ratio convergence tolerances
are within prescribed limits as explained earlier.

If all convergence requirements are satisfied the
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analysis proceeds to the next displacement step.
NUMERICAL EXAMPLES

A computer program based on the analysis
procedure described above has been written.
Two numerical examples solved by this pro-
gram are presented to show the validity and
applicability of the proposed procedure.

SCHREYER —MASUR ARCH
Schreyer and Masur[ 10] presented analytical

solutions for end clamped shallow circular

P = Uniform Pressure

w
B = 0.283 rad R = 100" T

}_ 55.84" _{

arches subjected to uniform pressure. This
example is chosen to verify the present numeri-
cal procedure for solving a snap—through pro-
blem and tracing the post—buckling branch of
the load—displacement curve. The structural
geometry and material properties are shown in
Fig. 5. 1. Due to the symmetry of the structure
one half of the arch is modeled by 10 beam —co-
lumn elements. The response of the structure is
obtained by selecting the central deflection w as
the controlled degree of freedom and imposing
w = 7 inches in 14 equal displacement steps of
0.5 inches each. Linearly elastic material pro-

perties are assumed.

E=10 psi
Load Multtiplier:
3
p= BR o 2
x2 El

-~ et

Fig. 5. 1 Schreyer —Masur Arch—Structure and Loading

The analysis has been carried out with the

following convergence tolerances for each dis-

placement step : displacement ratio = 107%;
maximum unbalanced force = 1"; maximum
unbalanced monent = 107 . The average

number of iterations for each displacement step
is 3. The load —displacement response of the
arch is shown in Fig. 5. 2. Good agreement
between the theoretical solution and the present
numerical solution can be noted. Relatively
large discrepancy at the end of the load —deflec-
tion curve can be attributed to the un-
conservativeness of the pressure loading acting

on the structural configuration which has been

H13A 2%, 1989. 12,

altered significantly after the snap—through.

Aroni Column

Aroni[11, 12 ] tested a series of eccentrically
loaded pretensioned concrete columns to study
their behavior under various conditions of ec-
centricity, slenderness, and the amount of pre-
stress. He also presented an analytical pro-
cedure to predict the response on these columns
based on the finite difference method. One of
the columns, designated by D;40b3, which
exhibits non-—positive definite stiffness after
bucking, is analyzed by the present method to
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test the accuracy of the present nonlinear
analysis procedure by the displacement control
strategy. The 80—inch(2032—mm) long column
was axlally pretensioned with four 0.198"(5.0 3
™) diameter high tensile strength steel wires.

The prestress was released at 14 days after

casting of concrete, then the column was cured
under water until 28 days after casting when
the eccentric load with the eccentricity of 1.5™
(38™) was applied up to failure. Intitial con-
crete compressive stress of 1.40(9.62M™) and
the initial midspan deflection of 0.25"(6.35™™)

7% Theory

<> Present Analysis

2.5

Load 15
Multiplier

p 1 /.\
0.5

/
P4

TS o)

0 0.01 0.02

0.03 0.04 0.05 0.06 0.07

Central Deflection w/R

Fig. 5. 2 Schreyer —Masur Arch— Comparison of Central Deflections

M=Peo;e= 15"

(a) Analysis Model

< 3
2
fe—>
Y [ ]
2.02" ¢~ \ - g
I . R ,4-0.198"¢ wires
Y

(b) Cross Section
Fig. 6. 1 Aroni Column—Structure and Loading
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was recorded in the experiment. Due to the
symmetry of the structure and the loading, one
half of the column is analyzed with 10 equal
elements, and the cross section is divided into
10 concrete layers. The analysis model 1s shown
in Fig. 6. 1. Concrete material properties are as
follows : 28 —day cylinder strength ', = 5.59*
(38.5MF2) : initial modulus of elasticity E; = 4.
94x10%*(23x10*") ; modulus of rupture ', =
0.559%(3.85MP) ; ultimate compressive strain
= (.006. The modulus of prestressing steel
wires is 29.3x10%(20x103MF2),

The response of the structure is obtained by
selecting the midspan deflection «w as the con-

trolled degree of freedom and imposing w = 2.9
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inches in 11 displacement steps of varying size.

The convergence tolerances used in the

) aroni'w Anslysis < Present Analysis J

- - —“% i

2600

7Y Experiment

Axial
Load 1500
P (Ibs)

000 -

0 0.4 0.8 1.2 1.8 2 2.4 28 32

Midspan Deflections(inches)
Fig. 6. 2 Aroni Column--Comparison of Load —
Deflection Values

analysis for each displacement step is as fol-

lows : ratio of the displacement increment to the

total displacement = 0.02 ; maximum unbal-
anced force = 10"} maximum unbalanced mo-
ment = 100""™. The average number of

iterations for each displacement step is 6. 5.
The experimental and analytical results for
the midspan deflection are plotted in Fig. 6. 2.
Good agreement between the experimental and
analytical results can be observed. Maximum
load that the column can sustain before
buckling is 2980"™(13.3%") for the present analy-
sis, compared with 2930"(13.04) for the

experiment. The {igure also shows that the. pre-
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sent numerical formulation traces the post—

buckling response of the structure accurately.

CONCLUSIONS

A numerical procedure, based on the finite
element method for the material and geometric
norlinear analysis of planar prestressed con-
crete beam—column structures, has been pre-
sented. The sloution of nonlinear equilibrium
equations is carried out by the displacement co-
ntrol strategy rather than the usual load control
strategy. The method has been shown to be
capable of predicting the displacements, internal
forces and reactions of these structure through
their _elastic, inelastic, buckling and post—
buckling ranges in one complete analysis. The
present modeling of material properties is
capable of capturing dominant axial and flex-
ural behavior of planar prestressed concrete
beam -~ column structures. The shift of the neu-
tral axis due to cracking of concrete i1s accu-
rately accounted for in the present element for-
mulation by incorporating additional internal
degree of freedom for axial displacement. The
accuracy and applicability of the present me-
thod has been demonstrated by numerical

examples.
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