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INELASTIC MODELING OF REINFORCED CONCRETE ELEMENTS
UNDER CYCLIC FLEXURAL AND SHEAR FORCES
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ABSTRACT

An inelastic element model capable of distinguishing between the shear and flexural hysteretic charac-

teristics for reinforced concrete elements was developed. The developed model consists of a single component

physical idealization of the element and hysteretic rules for flexural and shear force resistance mechanisms.

The predictions using the developed inelastic model were compared with the results of a number of eyclic

tests performed on reinforced concrete cantilever beams, and the comparisons between test and theory

were satisfactory.

1. INTRODUCTION

distinct characteristic(Figure 1) [Refs. 2, 5). The
shear hysteresis is distingished from the flexural
one by servere stiffnessand strength deteriorations
and lower energy dessipation. Shear deformations,

Total lateral displacements in reinforced concrete due to their deteriorationg nature, tend to
beams result from the flexural and shear deforma- gradually dominate the lateral response of R/C
tions. Each of these displacment components has beams to repeated inelastic load reversals.
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The available analytical models for predict-
ing the hysteretic behavior of R/C beams are
generally based on the assumption that flexure
fully dominates the element behavior(8].
These models can not properly idealize the
inelastic shear deformation, and this generally
leads to poor comparisons between the analy-
tical and experimental hystertic curves, espe-
cially after large inelastic cyclic deformations
in elements subjected to relatively high shear
stresses.

A practical model for predicting the hyste-
retic behavior of R/C beams has been develo-
ped in this paper. The model accounts for the
distinct hysteretic chracteristics of shear and

flexural deformations, and its predictions
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Fig. 1 Lateral Displ. Components of R/C Beams,
and Their Hysteretic Characterestics
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Fig. 2 Physical Modeis for Simulating’ the Flexural
Behavior of R/C Beams
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compare well with test results performed on
R/C elements with a variety of geometric and

material propeties.

2. CURRENT ANALYTICAL MODELS

The available anlytical models for predict-
ing the hysteretic behavior of R/ C beams,
usually consisting of a physical model(Figure
2) and some hysteretic rules(Figure 3), gene-
rally disregard the significant increase in
shear deformations caused by repeated inelas-
tic load reversals. A very popular model has
been based on a single component physical
idealization of flexural behavior(Figure 2¢c)
and the Takeda hysteresis rules(Figure 3c).
The shear deformations are accounted for in
this model by assuming that the ratio of the
shear to flexural deformations is constant in
both the elastic and inelastic ranges. This ratio
1s, however, relatively small in the elastic
range and it has been observed to increase
(due to the more severe deteriorations of the
shear resisting mechanisms compared with
the flexural ones)under inelastic load rever-
sals. Disregard for this increase in shear de-
formations is shown in Figure 4 to lead to
major descrepancies between the analytical
and experimental results. These discrepancies
are observed to be more pronounced for beams
with smaller shear span—to—depth ratios
(and consequently higher shear stress levels).

The analytical predictions of the inelasic
seismic response chracteristics of R/C frames
have generally been based on element models
incapable of accurately predicting inelastic
shear deformations. lLarge deviations from
test results, similar to the one shown in Figure
4, are expected in the analytical predictions

of these elements models. This shortcoming
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Fig 3

can produce large discrepancies in the
predicted response of frame structures
(especiallythosewith relatively deep elements)
under severe seismic excitations. Hence, it is
important to develop element models which
account for the inelastic shear deformations
in predicting the hystertic be-havior of R/C
beams, in order to achieve more reliable
predictions of nonlinear seismic response

characteristic of R/C structures.

3. THE PROPOSED ELEMENT MODEL

The element model developed in this study,

which consists of a physical idealization of
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the element and hysterestic rules for flexural
and shear force resistance mechanisms, is

described below.
3.1 Physical ldslization

Figure 5 presents the physical model of
R/C beams used in this study. In this model,
all the shear and flexural elasto— plastic
deformations under seismic forces are assum-
ed to be concentrated at dimensionless end
springs. In order to differentiate between the
hysteretic rules of shear and flexure, distinct
springs representing each of these types of
behavior are attached to the beam. The
behavior of each spring is defined by a
skeleton curve and a set of hysteretic rules.

The model shown in Figure 5 is a refined
version of the single component model. It is
practical (economical) because it involves

limited number of degreesof freedom. A compre-
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hensive review of the literatures also
indicates that its accuracy in predicting the
flexural response is comparable to that of the
more complex ones like the multiple spring
model(Figure 2d) and the single component
model with distributed inelasticies(Figure 2e).
The key advantage of the model proposed in
Figure 5 is, of course, its capacity to account
for the distinct hysteretic charac-teristics of
shear and flexural deformations which leads
to major improvements in its accuracy as the
shear deformations tend to dominate the

behavior in later inelastic load cycles.

3.2 Hystertic Rules of Flexure and Shear

In order to form the tangent stiffness ma-
trix of the element model presented in Figure
5, the tangent stiffness of each of the spring
needs to be drived as a function of the level
and history of the loading. In the following,
firstly a general set of hysteresis rules capable
of simulating a variety of hysteresis
characteristics(by proper selection of the
variables involved)are introduced.

Then the hysteretic parameters for flexural
and shear types of behavior, which have been
drived empirically, are presented. In this
presentation, the spring force(F) might be
flexural or shear force, depending on the type
of the spring, and the spring deformation
(X) might be flexural rotation or shear defor-
mation. The cyclic force —deformation model
presented below consists of a skeleton curve
and a set of hysteresis rules.

A bilinear curve(Figure 6) has been
selected in this study, mainly due to the fact
that the more complex triliner and curvilinear
ones do not significantly improve the accuracy
of the model(4, 8, 13). The initial loading takes

poace linearly with the stiffness K, up to the
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yield force F,, at deformation X,. Thereafter
the stiffness drops to a strain hardening value
of K.

Unloading before yielding takes place on
the loading curve (with a stiffness eqaul to
K. In the post—yield region, the unloading
stiffness(K,) will be decided using the para-
meter a(See Figure 6). This parameter should
be derived empirically for each spring type.

The rule for reloading towards the skeleton
curve in the opposite direction is illustrated
in Figure 7. The point on the skeleton curve
(R) towards which the reloading occurs is
defined by a parameter A that can have any
value greater than zero.

The basic reloading rules presented in
Figure 7 have to be refined to account for
the pinching effect which is dominant in

shear behavior and the Bauschinger effect

flexural spring

shear spring

/ / rigid segment
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Fig 5 Proposed Physical Idealization of Element
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Fig 6 Skeleton Curve and Unloading from The Skeleton Curve



displayed especially by the flexural behavior.
For this purpose, a line is specified which
intersects the horizontal(deformation) axis
at the same point as the strain hardening
portion of the skeleton curve, and its slope
is a fraction (¢) of the skeleton curve harden-
ing stiffness (see Figure 8). Another hystere-
tic parameter 7, that is between -1.0 and
1.0, defines the degree to which the actual
reloading path deviates from a straight line.
A positive value of 7 (Figure 8a) is indicative
of the Bauschinger effect, while a negative
(Figure 8b) leads to the pinching of the
reloading path.

The majority of load cycles sustained by
a structural element during a seismic event
have deformation amplitudes within the bound
of previous maximum and minimum deforma-
tions. Upon a small —amplitude load reversal,
if the reloading takes place towards the skele-
ton curve(indicating a large amplitude
reversal from skeleton curve in the previous
half cycles), the path shown in Figure 9 will
be followed. If reloading is in a direction
with the previous load reversal being incom-
plete, the reloading would take place towards
the peak point of the incomplete cycle. This
reloading path will involve pinching and
bowing if the incomplete cycle peak is above
the line with slope ¢ discussed earlier (Figure
10a). Otherwise, it will simply be a straight
line from the horizontal axis to the peak of
the previous incomplete cycle (Figure 10b).
It should be noted that the small amplitude
rules apply as far as the cyclic deformations
are within the previous maximum and
minimum values. If any of these limits are
exceeded, the regular large amplitude rules
will be effective again.

The suggested hysteretic rules are quite

versatile and, edpending on the values of

(1)o0<f<10 Mo < s

Fig 7 Reloading lowards The Skeleton Curve

(2)00Zy< 10

(b) ~1.0 <y < 0O

Fig 8 The Bauschinger and Pinching Effect on The Reloading Path

thier parameters, they can represent a wide
variety of hystertic characteristics as shown

in Figure 11.
3.3 Selection of the Hystertic Parameters

In order to complete the hysteretic simula-
tion of the flexural and shear springs in the
proposed element model, the yield force, the
initial and strain hardenings stiffnesses and
the hystertic paremeters (a,8,r and ¢{) of
these springs have to be determined. The
empirical variahles these values of the analy-
tical methods for calculating them are pre-
sented below.

Yielding of the flexural and shear springs
in Figure 5 is assumed to occur simultaneously
when the bending moment in the flexural
spring reaches the flexural yield strength of
the R/C cross section. The reported test data
of R/C beams support this assumption (5, 6].

The yield moment in flexure can be derived
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using the simplifield strain and stress distribu-
tions presented in Figure 12. At the yield
point, the concrete stress distribution across
the section is assumed to be linear, and
yielding of the tension steel is assumed to
mark the yield point. The depth of neutral
axis in Figure 12 can be obtained from the
equilibrium of axial forces, and then yield
moment of the cross section can be derived.
The force in the shear spring at yielding of
the flexural spring is assumed to be the yield
shear force.

The initial flexural and shear stiffnesses
of the springs are based on the moment of
inertia and the area of the cracked transfor-
med cross section using the conventional
elastic formulations.

The strain hardening ratio(the strain harden-
ing stiffness over the initial stiffness) and
the hysteretic parameters of the flexural and
shear springs were derived empirically using
the test data presened in references 1, 2, 5,
6,9 and 10. All these references have reported
the results of cyclic tests on R/C cantilever
beams with separte measurements of the
flexural and shear deformations. The test
techniques used in these refernces have
eliminated the deformations associated with
the fixed —end rotation. Table 1 presents the
average values of these variables for the

flexural and shear springs.

4. FORMULATION OF THE ELEMENT
TANGENT STIFFNESS MATRIX

The hysteretic models of flexural and shear
springs in proposed element model can be used

to derive the tangent stiffness of these springs



Table 1 Empirical Values of The Strain Hardening
Ratio and Hysteretic Parameters of The Flexural

and Shear Springs

Strain
Spring Hardening «a A r 3
Type Ratio
Flexural 0.021 0.16 097 042 0.75
Shear 0.043 011 1.22 -0.49 0.29

at any step in the loading history. These
stiffness es can be used in constructing the
overall tangent stiffness matrix of the
element. In the following, the tangent stiffness
matrix for cantil ever beam(commonly used
in experimental studies) will be developed.

The cantilever beam(Figure 13) has only
one degree of freedom, that is the lateral
displacement (&) at the free end of the element.
This displacement results from the shear
displacement of the shear spring and rotation
of the flexural spring.

dé=dé;+ £ -d6;

dv  dv-¢

B O

where,

dé = incermental displacement at free end ;
d8; = shear spring incremental displacement
d6; = flexural spring incremental rotation ;
dv = incremental lateral load at free end ;

{ = cantilver element length ;

K. = shear spring tangent stiffness ;

Hence, the tnagent stiffness(K,) of cantilever
element can be derived from the following
expression :

dv=K, - d8

Ly .
/

strain
distribution

yield strain yield force

stress
distribution

Fig 12 Simplified Flezural Strain and Stress Distributions at Yielding

o 1 i
L ; |
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shear spring {K.)
fiexural spring (X )

Fig 13 Cantilever Element

5. COMPARISON WITH TEST RESULTS

A large number of cyclic test data on R/C
cantilever beams have been reported in the
literatures{1, 2, 5, 6, 9 and 10]. This section
compares the experimental cyclic load-defor-
mation relationships with the predictions of
the developed models. Six tested R/C beams
with a variety of geometric and material
charcteristics  were  selected for this
comparative study. Some major properties of
these elements are given in Table 2.

Figure 14(a) and (b) compares the cyclic
force-deformation  relationships obtained
experimentally and theoretically, respectively,
for the cantiver beam No. 1(see Table 2). The
proposed model is observed to be capable of
predicting the test results with a reasonable
accuracy.

Figure 15 present the comparison between
the experimental and theoretical total cyclic
load displacement relationships for beam No.
4 of Table 2. In this beam, which have
relatively low shear forces compares to beam

Nos. 1 to 3, a resonable comparison can still
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Table 2 Properties of R/C Beams Used
Comparison Between The Tests and Theory.(in=

25.4m, 1psi= 6.89MPa)

S‘Z‘m iGn) ¢/d b o=0 p Fdksi) f(ksD)
1 5 31 79 0078 00043 61 4511
205 3l 79 00178  00M3 545 453
359 31 79 0078 00M3 48 4511
4 60 47 150 0.0103 0.011 4.75 5.4
5 60 47 150 00103 0013 406 518
6 60 47 150 00103 0020 425 518

¢ =cantilever element length
¢ /d =the shear span to depth ratio
b=the cross sectional width
0, p'=the ratios of bottom and top reinfor-
cement, respectively
os=the volumetric ratio of transverse rein-
forcement at the critical location near
the fixed end
f.’.f,=the concerete compressive strength and

steel yield strength, rspectively

be observed between the experimental and

theoretical results.

6. SUMMARY AND CONCLUSIONS

A practical element model was developed
in this study to predict the hysteretic beha
vior of R/C beams, accounting for the distinct
hysteretic characteristics of shear and
flexural deformations. All the elasto-plastic
deformations were assumed to be concentrated
in dimensionless serial shear and flexural
springs at the element ends. The behavior of
each spring was defined by a semi-empirical
skeleton force-deformation curve and a set
of empirical hysteretic rules which were
derived from the available cyclic test results
on R/C cantilever beam(in which the shear

and flexural deformations were meansured
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separately).

Based on the developed physical model,
tangent stiffness matrix was constructed for
cantilever beams. The developed element
model was checked against the results of a
number of cyclic tests performed on R/C canti-
lever beams with wide ranges of geometric
and material properties. The comparison

between test and theory was satisfactory.
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