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Abstract

A piping system is a structure composed of pipes with various thickness, diameter and length. Accurate
analysis of a piping system requires a complicated three dimensional finite element model and a computer
system with large memory size, while a simplified model may result in syutem response predicition with
deteriorated accuracy.

An efficient analysis mode! for piping systems is proposed in the present study. The proposed model
is developed by introducing pipe joint elements which accounts for the behavior of a pipe joint. Pipes
are represented by beam elements and the effect of local deformation of pipe joints is replaced by joint
element deformations,

The proposed model which is as simple and efficient as a beam model can be used to obtain piping
system response with accuracy close to that of a finite element model.
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1. INTRODUCTION

A piping system is generally considered to include
the complete interconnection of pipes, including
in—line components such as pipe fittings and
flanges. The contributions of piping systems are
essential in an industrialized society —they provide
drinking water to cities, irrigation water to farms,
and cooling water to buildings and nuclear power
plants, In the design of piping systems and their
supports, the factors that need to be taken into
consideration depend on the type of plant in which
the piping systems will be installed. For nuclear
power piping systems, the minimization of en-
vironmental hazard becomes the premier fa-
ctor. Moreover, nuclear power piping systems
are very complicated system which has various
types of connections and supports. Especially the
stress concentration near a pipe joint results from
the vibration which power plant operation, abrupt
failure and earthquake induce(2]. Thus, a pip-
ing systemdemands the high level of struct-
ural safety during a limited lifetime. And ac-
curate behavior of nuclear power piping sys-
tems must be estimated in both the static
and dynamic analysis against an accident.

In the present analytic method of piping systems,
there are one method which uses shell elements
and the other method which uses beam elements.
In the former case, even if the behavior of piping
systems can be accurately estimated, it is inapp-
ropriate and uneconomical to analyse entire piping
system because of difficult modelling and long co-
mputation time, In the latter case, saving in co-
mputation time is significant and analysis model is
simple, But it neglects the flexibility effect such
as ovalization of a pipe section which results fro
m a discordance between the main pipe center line
and the pipe joint. Thus, we can obtain merely

approximate analysis result by this method

In a pipe joint, the local deformation effect
depends on the ratios of diameter and thickness
of interconnected pipes. Especially the flexibility
effect of a pipe joint becomes the main factor
in the static and dvnamic analysis when the ratios
of diameter and thickness are large.

Thus, a method using beam elements in con-
sideration of the flexibility effect of a pipe joint
is more efficient than a finite element method
using shell elements and more accurate than a
simplified method using beam elements only, In the
present study, an accurate and efficient analysis
method is developed considering the local
deformation effect of a pipe joint by introducing
pipe joint elements,

2. DEVELOPMENT OF PIPE JOINT ELEMENT

A pipe joint shown in Fig.1 is an interconnection
of a main pipe and a slender pipe. The slender
pipe is connected at the perimeter of the main
pipe. In general, a main pipe has relatively large
diameter compared to thickness and the local
deformation of pipe joint as shown in Fig.2, When
the conventional beam model is used for analysis
of a piping system, it is assumed pipes are in-
terconnected at the center line of a main pipe
and ignore the effect of local deformation of
a pipe joint. In this study, pipe joint elements
are proposed to take the pipe joint flexibility into

consideration,
N
N

Figure 1. General shape of pipe joint
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Figure 2. Local deformations of pipe joint

Pipe joint elements are composed of two sub-
elements as shown in Fig.3. Element [[ is used
to represent pipe joint deformations shown in
Fig2(b) and element | is employed to account
for those shown in Figs.2(c) and 2(d). The length
of element [| is same as the radius of the main
pipe and the length of element [ is zero. The
pipe joint shown in Fig.l can be modelled as
shown in Fig 4 using the proposed pipe joint elements,

—e— -\

ELEMENT I ELEMENT II

Figure 3. Proposed pipe joint elements

o n

Figure 4. Pipe joint model using the proposed pipe joint
elements

2.1 Formulation of Stiffness Matrix

The element i¢ shown in Fig4 consists of
beam element #j, rotational deformation element
Jk and axial deformation element £¢. In the first
stage of stiffness matrix formulation, elernent

7 and jk are combined to form element 7k as
shown in Fig5. The rotational springs in two
directions that have stiffnesses, K, and K_,
respectively are installed at node j of the beamn
element. Thus, the member stiffness matrix of
the element 7k is expressed as follows :

NEARVAR

[K‘”_{[KAJ [K“.JJ o
Yy
5# *u

4 1 2,’ h’ k-* 8 7 10

— -7 : /k_> — —X,

Figure 5. Member with elastic springs at one end

The submatrix [ K, ] can be obtained by finding
the inverse matrix of the flexibility matrix [F -

(Kyl=[F,]" (2)

Terms in the submatrix [K,,] are defined as
the reactions at node k of the member due to u-

nit displacements at the same node, Statically
equivalent actions at node i may be computed

using the transformation matrix[ 7],

0 0-Lo 1 o0

OL 0o o1
Then, terms in the submatrix [K,] can be
computed as the static equilibrants of those in

[K,, ], as follows :

[Ki/.]z_[T.kJ EKU—J (4)
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Because the member stiffness matrix [K,]
is symmetric, the submatrix [ K, ] can be obtained

by transposing [ K, ].
[K/n]z[Kik]T':_[Kkk] lr,Jr (5)

And the submatrix [K,], similar to Eq.(4),
can be found from [K,;]. That is,

[K,-JZ—‘[TM,] [K,“-]=[Tik] [Kkk] [T,'k]r (6)

As stated above, the member stiffness matrix
which is considered to include rotational springs
at one end of the beam element is entirely derived

from the flexibility matrices.

(T (K (Ti) — (Tad (Kmd Y (7)
K= (o (o (Kne) )

Considering the elastic spring of the element
I in Fig.3, several terms related to axial deformation
of Eq.(7) in the right side must be modified.
That is easily derived from the motion of series
of springs.

To be compatible with the stiffness matrix
at center line of the main pipe, the equilibrium
with respect to force at nodes 7 and £, is presented
as

\Pi=[K,] U +[K,] U (8)

i

VPel = (Kxa)t Uit + (K )t Usl (9)

And, using the transformation matrix [T,]

with respect to nodes £ and £, the load-displacement

relations between these nodes are given by

{Pk}z[Tkl] ‘{PJ (10)
{U/:=[Tk[] :Uk: (11)

The transformation matrix [Ty) is formed
as follows (7] :

1 0 0 000
0 1 0 00O
0 0 1 00 0O
(T.]J=| 0 2, ,100 (12)
2, 0 -x,0 1 0
'TYN X, 0 0 0 1/

where x,, is a distance between two nodes &
and ¢ with respect to x—axis, and y,, z,, are
one with respect to y —axis and z —axis respectively,
From Eq.(11), it can be rewritten by {U,} as
shown in Eq(13).

{Uk}z[T“]Jf {U/} (13)

Then, substituting Eq.(13) into Egs.(8) & (9),
the following equations are derived.
{Py=[K;] {U+[K,] [T,]T U (14)
{Py=[K,] WUi+[K,] [T,]7 U} (15)

And if Eq.(10) is substituted into Eq.(15), we
can obtain Eq.(16) with respect toi Pii.

\Py=[T, ' K JUH[T,) (Kl T )7 U}
(16)
In matrix forms, with respect to nodes ¢ and
¢, it can be written as follows :

{Pj [ (K] K] (T 1( w,
Ll

PP TIT K] (T (K) (T

NI

ShS

{
(1

Ultimately, the member stiffness matrix which
includes the characteristics of the proposed pipe

joint elements is shown as

(T (K] (T —(T,) LK) (T ]
(K ) =
[Tl KL T (T (K,] (Tad !
(18)
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2.2 Determination of Stiffness Values

The proposed pipe joint elements using three
springs play an important role in an efficient
analysis of a piping system because the flexibility
effect comes from them on a pipe joint. Their
stiffness values depend on parameters such as
length, thickness and diameter etc. of the main
pipe with a pipe joint, and how they change
according to the parameters shall be helpful to
a simplified analysis of piping systems, But, if
a pipe joint is not typical in shape, it is very
difficult to find them through a theoretical study.
So, we have got approximate values through a pa-
rameter study, This parameter study is in proce-
ss.In the present study, the stiffness values of
the pipe joint model as shown in Fig 6 have been
obtained by the load—displacement relationships

when the ratio of length to diameter is egual to4. ,

Figure 6. Main pipe with a pipe joint to determine stiffness
values

2.3 Formulation of Mass Matrix

In the formulation of the mass matrix with
a pipe joint, using the concept of a rigid body
motion as stated above, mass matrices corresponding
to the pipe joint elements can be acted on the
center line of the main pipe. The lumped mass
matrix [M] of the element ik, shown in Fig.
5, can be obtained as follows :

_|mM] 0

[M] O [M,] (19)

The inertia force with respect to node £ is

{Py=[M,] {t},] (20)

Differentiating the displacement vector {U ) of
Eq.(11) twice with respect to time ¢, the acceleration
vector can be obtained as follows :

Up=I[T, I U, (21)

Substituting Eqgs.(10) & (21) into Eq.(20), the
following relationship is obtained.

{P¢}=[Tu]_l [Mk] [Tu]_T {iiz} (22)

Thus, the mass matrix with respect to node ¢
is

[M1:|=[Tu]_l [M/J [Tu]_T (23)

Consequently, the mass matrix for the element
i¢ can be expressed as

(M) =[ [Ag] [181] ]

3. NUMERICAL EXAMPLE

(24)

3.1 Example Structures

One out of several example structures used
to verify the performance of the proposed pipe
joint elements and analysis model is shown Fig,
7. Length, diameter and thickness of the main
pipe are 550cm, 50cm and .5cm respectively and
two slender pipes are joined to the main pipe
at the pipe joint 150cm and 350cm apart from
the left end of the main pipe respectively. Both
ends of the main pipe are fixed to rigid base.
Diameter and thickness of slender pipes connected
to the main pipe are 10em and 0.5¢m respectively
and lengths are shown in Fig7, The material
for all of the pipes is assumed to be structural
steel,
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Figure 7. Example structure

Three types of analysis model are used in this
study, Model C is the conventional beam model th-
at cannot account for the effect of local defor-
mation of pipe joint, while Model P is the pro-
posed model which has pipe joint elements in addi-
tion to beam elements. A three dimentional finite
element model, named Model F, consists of plate

/shell elements representing the main pipe and be-

Table 2. Translation and rotation obtained by static analysis

am elements employed to model slender pipes. The
numbers of nodes and elements used for these m-
odels are listed in Table 1. For a complicated
piping system, the numbers of nodes and elemen-
ts to be used for the Model F will be increased
significantly while those for the joint models used
for the Model P will be limited by the number of
pipe joint types.

Table 1. Nodes and elements of models

o Number of Number of Number of“,
Nodes Beam Elements | Shell Elements
Model C 26 25 0
_ Model F 91z | 12 904
Model P | 26 25 0
Pipe Joint |
I Model used 328 0 332
ifor Model P

3.2 Static Analysis Results
Loads applied to the piping system are shown

in Fig 7. Analyses for Model C and P were per-

formed using computer program developed in this

[em, rad]

[ Translation in x —dir. Translation in y—dir. Translation in z—dir.
NI?I?) € | Model P | Model F | Model C | Model P | Model F | Model C | Model P | Model F | Model C
A .003 .043 .006 .045 .084 016 | —20.892 | —21.274 | —10.823
B .004 .050 .006 .050 .088 021 —35.514 1 —36.046 | —23.953
C .003 036 .004 .055 092 .026 | —31.630 | —32.017 | —23.688
D .001 .015 .002 .060 .096 032 | —13.123 | —13.267 | —10.253
E .000 .000 .000 .065 101 .037 —.002 —.002 —.002
F 6.001 6.159 3.546 .000 .000 —.000 —.001 .024 —.002
G 2.803 2.858 | 1.631 .000 000 --.000 —.000 .013 —.006
Rotation in x —dir. Rotation in y —dir. Rotation in z —dir.
NNOi € | Model P | Model F | Model C | Model P | Model F | Model C | Model P | Model F | Model C
A 1016 .1035 0753 .0000 —.0004 .0000 .0000 .0001 .0000 |
B .0317 .0315 .0400 .0000 ~-.0003 .0000 .0000 .0000 .0000
C —.0673 —.0684 —.0425 .0000 —.0002 .0000 .0000 —.0001 .0000
D —.0984 —.0996 —.0755 .0000 —.0001 .0000 ’ .0000 —.0001 .0000
E —.0134 —.0136 —.0107 .0000 .0000 .0000 0000 .0000 .0000
F .0000 .0000 —.0001 .0445 .0453 .0291 .0122 .0128 .0076
L G .0000 -.0001 .0000 .0334 .0340 .0218 0174 .0178 .0102
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Table 3. Member forces obtained by static analysis {ton, ton - cm]
Axial Force Shear Force in y-dir l Shear Forcen in{z—dir
B;a;“ Model P | Model F | Model C | Model P | Model F | Model C | Model P | Model F | Model C
1 808 702 889 80 79 99 .000 —~.001 .000
— 808 —.702 —~ 889 —.80 -9 99 .000 001 - .000
5 808 702 889 —1.20 —1.21 -1.01 .000 —.001 .000
— 808 —-.702 — 889 1.20 1.21 1.01 .000 .001 .000
6 600 605 506 1.38 1.35 1.12 .000 —.001 .000
— 600 — 605 — 506 ~1.38 —1.35 —1.12 .000 .001 000
7 ~.600 — 605 —506 —158 —1.64 —1.23 .000 000 000
600 605 506 1.58 1.64 1.23 000 - .000 .000
8 000 001 —.001 .00 — 03 01 — 851 — 850 — 916
000 —.001 001 | 00 03 —.01 851 850 916
9 | —om 026 ~.014 .00 00 00 149 150 084
| 001 —.026 014 00 ! 00, .00 —.149 —.150 —.084
: , Torsion ‘ Bending Moment in y-dir Bending Moment in z-dir
Bifom Model P | Model F . Model C | Model P ' Model F | Model C | Model P | Model F | Model C
T 00 14 00 0 5 1 94.4 88.1 222.6
| 00 —.14 .00 0 -3 0 64.7 9.8 —259
5 00 —.14 00 0 -1 0 55.7 56.7 32.9
00 —.14 00 0 2 0| —-2958| —2088  —235.2
6 01 09 | 01 0 1 0 140.7 138.3 1135
—.01 —.09 —.01 0 1 0 66.7 63.5 54.6
7 —01' —.09 —.01 0 0 0! —1551| —1606 —121.8
‘ 01 .09 01 0 0 0 —8l2  —89  —630
8 ~2581 1 —2538| —13.82 109.1 109.5 125.0 1 -36 18"
25.81 | 25.38 13.82 177 18.0 116 0 -2 3
9 17.69 | 18.02 11.58 —258 ~25.4 —138 0 2 -3
—17.69 | —18.02 | —1158 —4.1 ~4.6 —29 0 0 1

study in 16—bit IBM PC, and for Model F, SAP
IV was used in a super computer (CRAY 28S).
Nodal displacements of slender pipes are co-

mpared in Table 2. Displacements obtained

using the Model P are very close to those of
the Model F while the Model C underestimated
significantly because the flexibility of pipe joints
is ignored. Member forces of slender pipes are
listed in Table 3. The effect of flexible pipe joints
tends to reduce axial forces and bending moments
m a slender pipe near the pipe joint and increase
bending moments and shear forces at the other
end of a slender pipe, Consequently, a piping

system designed based on the analysis results
which are obtained by using a conventional beam
model may result in over—design near the pipe
point and under —design around the other end
of a slender pipe,

3.3 Dynamic Analysis Results

The main purpose of dynamic analysis of example
structures is to verify the equivalence of structural
properties of two beam models and the finite
element model because dynamic response of a
structure is mainly dependent on eigenvalues and
eigenvectors of these systems. The first five
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Table 5. Mode shapes of models

Mode Model P Model F Mode]l C

SO
PN
SO
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frequencies for models C, F and P are listed
in Table 4 and corresponding mode shapes are
shown in Fig.8. Frequencies of model F and P
are very close to each other and much lower
than those of model C which can not account
for the flexibility of pipe joints, Mode shapes
of the example structure demonstrate that dynamic
behavior of two slender pipes are almost independent
and the main pipe can be considered as a flexible
support to a slender pipe. Discrepancy in frequencies
will result in significant differences in dynamic

response prediction,

Table 4. Frequencies(cycle / sec)

Mode | Model P Model F Model C
1 4823 1788 5378
2 4.947 1933 5.919 |
3| 11916 11.810 1495 |
41 141 14.080 11987
51 an 14.400 16.180

Therefore, addition of the proposed pipe joint
elements to a beam model is expected to improve
the accuracy of dynamic response prediction for
a piping system., Consequently, it turns out to
be essential to account for the flexibility of pipe
joints in the response prediction of piping systems.

4. DISCUSSION & CONCLUSIONS

The proposed pipe joint elements are introduced
in the present study to account for the local deformation
of a pipe joint where a slender pipe is connected
to another pipe with relatively larger diameter,
The static and dynamic analyses of several example
piping systems have been performed and the
following conclusions are drawn from comparison
of analysis results obtained using three types

of analysis model.

1. Beam models with the pipe jint elements
result in a very accurate response prediction of
a piping systemthose while those without the

-113-
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pipe joint elements lead to underestimation of
displacements and overestimation of bending
moments in the slender pipe and stresses
in the main pipe around the pipe joint for
the static loads.

2. Beam models with the proposed pipe joint
elements lead to an accurate prediction of
frequencies and mode shapes which is essential
for accurate estimation of dynamic response
of a piping system subjected to a severe
earthquake.

3. Time history of stresses near a pipe yint
can be obtained efficiently using the proposed
model and fatigue analysis of the pipe joint
of a complicated piping system can be performed
on a personal computer.

4. The proposed analysis models can provide
the static or dvhamic response prediction of

a piping system with an accuracy comparable
to the one obtained using a complicated three
dimensional finite element model while the si-
mplicity of the proposed model and requrire-
ments for the memory size and computational

time are similar to those of the conventional
beam model.
The procedure used to estimate the equivalent

92

stiffness of fictitious springs used in the
proposed model need to be improved and
simplified using the theory of thin shell.
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