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Asset Selling Problem
With Beta Distributed Price Offers
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ABSTRACT

This practical paper puts existing optimal stopping rules for various asset selling situations into a cohe-
rent perspective, using simple non-measure theoretical terms.

It also provides analytical or numerical solutions when the price offers are beta distributed.

1. Introduction

The asset selling problem is an optimal stopping policv problem like the well-known secretary problem
(see [7, 8]). Consider a person having an asset to sell. The seller receives independent and indentically
distributed price offers. The only decision the seller must make is when to stop receiving offers and accept
an offer. The objective is to maximize the seller's expected net return.

This paper considers various asset selling situations with regard to the arrival pattern of offers, and to
the length of the planning horizon. Regarding the arrival pattern of offers, the following two cases are con-
sidered :

1) Poisson arrival of offers :
This case is commonly termed as a semi-Markov decision problem in “continuous time”.
2) Non-random arrival of offers :

This case is termed as a “discrete” Markov decision problem.

Regarding the length of the planning horizon, the following two cases are considered :
1) Finite planning horizon :

In a continuous time problem the seller is subject to a fixed amount of time, whereas, in a discrete
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time problem the seller may consider up to a fixed number of offers. In either case, continuous or

discrete, it is assumed that once an offer is rejected it is immediately lost and cannot be recalled.
2) Infinite planning horizon :

In a continuous time problem the seller is allowed an unlimited amount of time, whereas, in a discrete
time problem the seller is allowed an unlimited number of offers. However, delaying the decision in-
curs a cost. A continuous type cost is a cost per umit time, and a discrete type cost is a cost to receive
another offer.

The basic principles of the optimal stopping problem can be found in [1] and [4]. Since Karlin's [8]
extensive study on the asset selling problem, various authors considered further developments of the sub-

ject and further applications to specific cases :

1) The case of fixed number of offers (discrete, finite horizon case) can be four}d in some textbooks such
as [2]. ,

2) The case of an unlimited number of offers (discrete, infinite horizon case) can be found in [9] and

[117.

3) Cowan and Zabczyk [5] consider the case of a fixed amount of time (continuous, finite horizon case).
However, their objective is to maximize the chince of selecting the best choice, as is the objective of

the secretary problem.

Figure 1. Examples of Beta Distributions
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4) Zuckerman [12] investigates, among other things, the case of an unlimited amount of time (continuous,

infinite horizon case), within the context of job search.

The purpose of this paper is twofold. First, various cases are put into a coherent perspective. In addition,
for the sake of readability, optimal stopping rules are derived and stated in simple non-measure theoretical
terms. Rigorous formulation and complete proofs can be found in the literature referred to earlier. Second,
instead of providing users with only general optimality conditions and characteristics, this paper provides
numerical solutions and some analytical solutions when the price offers are beta distributed. (Karlin [8
provides solutions for the cases of exponential and uniform distributed price offers).

The choice of a bheta distribution is primarily due to the nature of the price offers which have definite
maximum (asking price) and non-negative minimum vaiues. Furthermore, the parametric family of beta
distributions provides the seller with flexibility in choosing the distribution which most closely suits his
specific situation. Some examples of beta distrikutions are presented in Figure 1.

Additional variations briefly investigated include :

1) non-homogeneous Poisson arrival of offers (see [31) :
2) infinite sequence of buy-sell processes (see [6]) i and
3) selling several identical assets by a deadline (see [, 6, 8, 101).

2. The Case Of Fixed Number Of Offers

(Discrete Time, Finite Horizon Policy)

We will first consider a simple example. A person has a used car for sale, and there are two potential
customers. Whenever the seller visits a customer, he receives an offer which is uniformly distributed ra-
nging from $ 5,000 to $ 10,000 (the asking price). The seller, however, will not consider any offer below
the trade-in value (salvage value) of $6,000. Each offer must be accepted or rejected right away. The
seller intends to maximize the expected price.

Suppose the seller has rejected the first offer and is now at his second customer. It is obvious, then,
that he should sell the car if the second customer’s offer is greater than (or equal to) the salvage value
of $6,000. The expected price the seller can obtain at this stage is given by the following conditional ex-

pectation -
15 (60000 (1/5000) dx + A x (1/5000) dx = $7600.

Suppose the seller is at his first customer. In this case, the principle of dynamic programming (section
4) suggests that he should sell the car if the first customer’s offer is greater than (or equal to) $ 7,600.

The expected price he can obtain at this stage is -
f3 (7600) (1/5000) dx + JE x (1/5000) dx = $8176.

If the seller had three potential customers instead of two, then $ 8176 would, of course, serve as the
optimal threshold value when the seller is at his first customer.

The general case of the problem will be developed using the following notation :

B =maximum price (asking price)

A =minimum price



S =salvage value (trade-in value), B>SzA=0
Note . We separate the less likely case that "S<A”, and discuss it in the Appendix.
X =price offer (independent and indentical)

f(x) =density function of beta distributed X

=K@ [1/(B—A) ] " (x—A) ' (B—x) ', Bzx=A
where >0, r>0, and K{gr) =T(q+r)/[T(q) - T(r) .
V, =maximum expected value (price) when the seller has n offers to receive where n=0, 1, 2, -~
and V, =8S.

Note that, in the example presented earlier. B— $ 10,000, A= $ 5,000, S= $ 6,000, ¢=r=1, V. = $ 6,000,
V, = $ 7,600, and V., = $8176.
In general, V. serves as the optimal threshold vaiue when the seller has {n+ 1) offers to receive. The

maximum expected price he can obtain at this stage is:
\/ B
Voo =¥y, ((x) dxfiv x f(x) dx
A n
B
=V, H‘V (x—V,) f{x) dx ) (1)

The integral in (1) can be carried out in a straightforward manner by using the binomial expansion
and then by integrating the resulting power series term by term. For simplicity, we transform X to the
zeroone beta random variable Y, Y=(X—A)/(B—A), whose density function is gly) =K(gry* '(1—y)" " Note that
the binomial expansion of (1—y)' ' is an infinite series unless r is a positive integer, and so is the integral in
(1). For this reason, we consider, in this paper, positive integer valued r only. (One exception is the case when
q=1.

For a positive integer valued r, (1) becomes

(q+1) - (g+i+ DE, +E, "
(q+i)(g+it+1) 2)

Vo =V, +H(B—AK(gD E ¢ (1)

where K(gr)=(g+r—D(g+r—2)[{q+v)—+I/G—D !,

¢ H=G-D1/L=1-Di!], and
E, =(V, —A)/(B—A) is the standardized expected vzlue.
When r is not a positive integer, " :Zj (.11),, in (2 should be replaced by
* ]i“ DG G—DA 7.

When q=1, however, it can be shown, by using binomial indentities, that the infinite series mentioned

ahove (or the non-integer-r version of (2)) becomes
Voo =V, +(B-V, )" G+ D(B-A)]T, (3)

which is valid for any r>0. Note that (3) includes the case of uniform destribution (q=r=1).
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3. The Case Of Unlimited Number Of Offers
(Discrete Time, Infinite Horizon Policy)

In this case, we assume that the previous seller is allowed to receive an unlimited number of offers
and that the seller has to pay a cost of C monetary units each time he receives an offer.

Including the cost factor of C into (1), we get

B
Vo=V +j, (x=V.) f(x) dx — C (4)
V.

Here, V. is interpreted as the maximum “net” expected value. In addition, it is as umed that

Table 1 : Roots of Equation (6)

E Q=2 Q=2 Q=2 Q=3 Q=
c =3 R

Q73 Q-3 Q-4 Q=4 Q4 Q4
R=2 R R=41 R-1 : -

R—3 R=4 R= R~2 R~ 3 R=4

353

100 000000 000000 000000 000000 OLGR00 000000 000000 000000 000000 000000 000000
(.98 000004 .000000 000000 000592 000016 000000 00000 000784 000026 000001 000000
0.96 000063 000002 000000 002337 000123 000005 000000 003075 000201 000012 000001
094 000210 000012 000001 005187 000407 0000310 000002 006781 000658 000058 000005
092 000492 00039 000003 .009098 000944 00009 000009 011816 001512 000177 000019
0.90 000950 000094 000009 014025 001806 000221 000026 018098 002863 000416 000057
088  .001524 .000192 000023 019924 003056 00044 000063 25546 004796 000830 000136
086  .002552 000352 000049 026752 004752 00080, 000133 034085 007382 001480 .000281
0.84 003768 000592 000094 034468 006944 001341 000251 043642 010680 002430 000525
0.82  .005307 000936 000166 043030 009678 00209: 000440 054148 014735 003744 000905
(180 007200 001408 000277 .052400 012992 003104 000722 65536 018584 005486 001466
078  .009477 002033 .000440 062538 016920 004424 001128 077743 025251 007719 002256
0.76 012165 002840 000669 073405 021490 00609 001690 090711 031753 010504 003330
0.74 015291 .003857 000982 084966 026725 .008164 002443 104380 .039096 013894 004743
072 018879 005114 001400 09718, 032644 010686 03428 118693 047282 017942 006556
070 022950 006642 001944 110025 .039258 013689 004686 .133614 056304 022692 .008827
0.68 027525 008472 002640 123453 46578 006262 149079 066148 028181 011617
066 032622 010637 003514 137437 054607 021320 008202 165047 076797 034443 014983
064 038258 013168 004595 151943 063348 026027 010552 181475 88228 041502 018983
062 044446 016097 005916 166941 072795 .03136% 013361 .198323 100413 049376 023666
060 051200 019456 007509 182400 082944 0373710 016677 215652 113323 058075 029082
038  .058530 023275 009410 198291 093784 044074 020545 233127 126923 067603 035271
056 066444 027586 011654 214586 1056301 051484 025011 251015 141179 077957 042269
0.54 074949 032417 .014280 231258 117481 059622 030118 269183 156053 089126 050104
052 084050 037796 017327 .248279 130304 068500 035906 287604 171507 101094 058797
0.50 093750 043750 020833 .265625 143750 078125 .042411 306250 187500 .113839 068359
048 104050 050304 024840 283271 157796 .088500 049666 325096 .203993 127334 078797
046 114949 057481 .029387 301194 172417 099622 057697 344119 .220947 141546 090104
044 126444 .065301 034513 319370 187586 111484 066528 363298 238321 156439 102269
042 .138530 073784 040257 337779 .203275 124074 076175 382614 .256076 171973 15271
040 151200 082944 046656 .356400 219456 137376 86647 .402048 274176 188105 129082
038 164446 092795 053746 375213 236097 151369 097948 421585 .292583 .204790 .143666
036 178258 103348 061561 394199 253168 166027 110074 441209 311262 221981 158983
034 192622 114607 (070131 413341 270637 181323 123015 460909 330180 .239630 174983
032 207525 126578 079482 432621 288472 197222 136753 480671 .349306 .257691 191617
030 222950 139258 089637 452025 306642 .213689 151263 .500486 368611 276115 .208827
028 238879 152644 100616 471637 325114 230685 166513 520344 388066 .294857 .226556
026 255291 166725 112430 491142 343857 248169 182466 540238 407649 313872 .244743
0.24 272165 181490 125086 510829 362840 256097 199075 560159 427336 333118 .263330
022 289477 .196920 .138584 530586 .382033 284424 .216291 580103 447106 .352557 282256
0.20 307200 212992 152917 .550400 401408 2303104 234057 600064 466944 372151 301466
0.18 325307 229678 .168069 570262 420936 322092 315 620038 486833 391868 320905
0.16 '13768 .246944 184013 590164 440582 341341 271001 640021 506760 411680 340025
0.14 2552 .264752 200716 610096 460352 360807 290052 660011 526715 431561 360281
012 . 624 .283056 218129 630052 .180192 380447 309402 680005 546690 451492 380136
0.10 40y, " 301806 .236196 650025 500094 .400221 328987 700002 566676 471455 400057
0.08  4204y. 320944 .254845 670010 720039 420093 348748 720001 586670 491437 420019
0.06 440210 340407 273991 .690003 10012 440030 368630 740000 .606667 .511431 440005
004 460063 360123 710001 260002 460006 388583 760000 626667 531429 460001
0.02  .480008 380016 730000 530000 480000 408572 780000 .646667 551429 480000
000 500000 400000 750000 600000 .500000 428571 800000 666667 571429 500000
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B
C<J‘V (x—V,) f(x) dx, otherwise it is not worth it to pay C to receive an offer.

Let V. be the limiting value of V, as n approaches infinity. Then (4) becomes
B )
C:J'V (x—V.) f(x) dx. (5)

The optimality condition (5) can be interpreted in the following terms of marginal analysis - For a maxi-
mum expected net return to occur, marginal cost, or the cost to receive another offer, must equal the ex-
pected marginal revenue from receiving another offer.

For a positive integer valued r, (5) becomes

(q+D—(g+i+ DE +E*
(q+i)(g+i+ D) (6)

C=(B-A) Kign) T ( (-1

just like the way (1) becomes (2),
where K(qr)=(q+r—D{(qg+r—2)q/cr— 1 ! and E. =(V. —A)/(B—A).
Likewise, when q=1, (5) becomes
C=B-V) ' /LG+DB-A)]. (7)
From (7), we obtain the following closed form solution
V. =B-[G+DB-A)CJV?P (8)

which 1s valid for any r>0.
As an example, if the seller in the previous case (where q=r=1) was allowed to receive an unlimited
number of offers, but had to pay C= $ 576 to receive an offer, then from (8)

V. =10000—[(1+1) (10000 —5000)! (576) 1V ¥ = 4 7600

Therefore, the seller would take the firsf offer that is at least $ 7,600.

When q#1, it is usually difficult to obtain analytical solutions. One way to compute V. when q71 is
to use the iterative equation (4). Unlike (1), (4} quickly converges to a steady state (with a four digit
accuracy after approximately ten iterations).

We can also compute V. using (6) for the case of positive integer valued r. This time, finding V. given
C usually requires one-dimensional search. When both q and r are positive integer valued, (6) becomes
a (g+r)" degree polynomial equation, thus, at least in principle, we can obtain roots of the equation anal-
ytically up to q+r=4. For example, for ¢=2 and r=1, E. =2 cos (8+4n/3), where 8=(1/3) cos ' (15
C—1). On the other hand, finding C given V. is straightforward. Table 1 lists the values of C/(B—AJ
thus computed given various values of E. = (V. —A)/(B—A), for some selected beta parameters (q, r=2,
3, 4).

Suppose, in the previous example, the beta parameter values were q=r=4(instead of q=r=1). Then,
an approximate optimal threshold value can be obtained as follows I In the last column of Table 1, the
value, nearest to C/(B—A)=576/(10000—5000) = .1152, is .115271 which corresponds to E. =.42, which,
in turn, yields V. = $7,100.



4. The Case Of Fixed Amount Of Time

(Continuous Time, Finite Horizon Policy)

In this case, the seller is allowed a fixed amount of time during which he receives a stream of offers
determined by a Poisson process with a rate A. Like the case of a fixed number of offers (section 2), each
offer must be accepted or rejected immediately, and the seller intends to maximize the expected return.

The optimal stopping policy based on the principle of dynamic programming is quite intuitive. An offer
is acceptable if the price offered meets or exceeds what the seller expects to get in case of rejecting the
offer just made, assuming the seller will follow the same decision rule during the remaining time. (In sec-
tion 8, the optimal stopping rule is mathematically proved for an extended case of this problem).

Let V(1) be the maximum expected return at t, i.e, V(t) is the expected return under the optimal policy
described above when the remaining time until a fixed deadline is t. Then, V(t+8t), the maximum expec-
ted return at t+6t, is given by the following conditional expectation :

V(t+6t) = (1280 V(D +rst [%" V) f(x) dx + [ xf(x) dx]+O0(8t) (9)

The conditions are whether or not an offer arises during [t+8t, tJ, with the probability of one arrival
being ASt, and, if an offer does arise, whether or not the offered price exceeds the optimal threshold value
at that time. If no offer or an unacceptable offer is made during [t+8t, t], the maximum expected return
at t+8t is V(t) 3 if an acceptable offer of size x, x =V(t), is made, then x is the return at t+38t. (The
event of more than one arrival during [t+8t, t] is reflected by O(8t), where O(8t)/8t approaches zero
as 8t approaches zero according to the Poisson axiom).

Converting (9) to a differential equation, we get

dv(t)/adt = &, [x— V()] f(x) dx (10)

Note that we could have obtained (10) by simply replacing V, and (V..; —V.)/[(n+1)—n] in (1) with
V(t) and dV(t)/Adt, respectively.
As before, for a positive integer valued r, (10) becomes
av) (q+1) —(q=i+ DE() +E(x)e !
Adt (gt (q+it+1) (1D

=(B-A) Klgn) T ( H(-1)
where t=0, V(0) =S, K(qr)=(q+r—1D{(q+r—2)--q/(r—1 ! , and E(z=rt) = [V(0) —AL/(B—A).
Also, when q=1, (10) becomes the following equation which is similar to (3) and (7) :
dV(O/Adt=[B—=V® T " /[G+D(B-A)]. (12)

Solving this differential equation (12) we obtain the following closed form solution for the case of
q=1:
V() = B—{u [r/(r+ D] (B=A) "+(B-S) "} v (13)
As an example, suppose the seller in section 2 is allowed a fixed amount of time instead of having 2
potential customers. Specifically, he expects to receive offers at a rate of 2 per week during a 4-week pe-

riod of waiting for his new car on order. As before, price offers are uniformly distributed (¢=r=1 ra-
nging from $5,000 to the asking price of $10,000. In the case of no acceptable offer, he can still trade
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SCNIS e ON—

Q=2
R=1

.000000
063444
120876
172920
220154
.263100
332229
337959
370660
400657
428239

477135
.498866
519025
537764
.555216
571501
.586726

600984
614360
638756
660426
679783
697165
712847
727050
739993
751807
762636
772595
781783
790283
798168
805501
812336
818722
.824700
.830307
835577
.840538
.845216
.849634
853813
857771
.861526
870117
877724
884505
.890587
.896071
901039
909594
916976
923184
928536
1933201
937299
940928
944163
947065
.949683
966373
947743
979825
.983195
.985602
987407
.988810
.989933

.998999

Q=2
R=2

.000000
047584
.090571
129760
165274
197652
227249
254382
279332
302342
323622
343356
361706
378812
.39479%
409764
423813
437026
449477
461231
472347
492868
511395
528214
.543561
557629
570578
582544
593639
.603961
613591
622602
631504
.639001
.646490
653562
660252
666594
672615
678340
683793
.688994
693960
698710
703257
707616
717764
726974
.735378
.743085
750185
756751
768523
778797
787859
795928
808171
809717
.815670
821114
.826115
.830731
.863139
882248
895179
.904660
911989
917870
922722
926814

977387

Q=2
R=3

000000
038058
072544
.103831
132299
158284
.182081
.203947
224104
242747
.250041
276131
291142
305184
318352
.330730
342389
353395

373668
.383030
400409
416212
430551
443938
456190
457544
478102
487954
497175
.506829
513974
521656
.528928
535799
.542329
548538
.554452

.565485
570642
575682
.580320
584879
.589245
.593454
.603323
.612362
620684
.628380
635527
642187
654258
664935
674472
683063
690858
697977
704513
.710544
716133
721334
759141
782699
799304
.811880
821867
.830068
836973
.842900
929105

Table 2 : Roots of Equation{11)

Q=2

R=4

000000
031723
060458
086543
110295
131995
151892
170201
187106
.202769
217326
.23089%6
.243583
.255475
.266651
277178
287116
296517
305428
313890
321939
.336927
350612
.363476
374765
.385501
395486
404805
413531
421725
429442
436726
443618
450153
456362
462271
467906
473287
478434
483363
488090
492630
496994
501195
.505241
509145
.518328
526781
.534601
541865
548639
554978
.566532
576825
.586081
594470
602125
609153
615639
621663
627251
632483
671214
696047
713923
727690
738776
747987
755822
762610

870286

Q
R

!

000000
071372
.135955
194409
.247339
.296306
.338821
378349
414309
447079
476997
.504362
529443
552477
573672
593216
611273
627988
643492
657899
671311
695506
716691
735359
751907
766656
779870
791764
.802518
812281
821177
829314
836781
843654
849999
855872
861323
.866394
871123
875542
879579
883560
887208
890642
.893880
.896938
903887
909983
915371
1920166
924460
928325
.935001
.940569
945258
.949276
952767
955797
958471
960845
.962966
.964871
976844
982755
2986270
.988599
990254
2991490
992449
993214

999332

Q=3
R=2

000000
057098
108767
155543
197925
236376
271320
303141
332182
358750
383117
405520
426171
445254
462931
479346
494624
508874
522196
534674
.546386
567775
.586820
503888
619275
633221
645923
657544
668221
578068
687180
695640
703519
710876
717765
724230
730311
736043
741457
746580
771436
756046
.760431
.754606
768587
772389
781188
789108
.796282
802815
.808796
814297
824084
832548
839955
846504
852347
857389
862350
866675
870634
874273
899457
914041
923791
.930886
936339
940696
944279
947292
19834929

Q=3
R=3

000000
047582
090541
129630
164972
197062
226261
252894
277250
.299586
.320128
339071
356591
372837
387941
.402019
415173
427491
439052
449952
460172
478998
495897
511163
525032
537699
549322
560034
569944
579145
587719
.596129
.603236
.610288
.616930
623199
629128
634748
640083
645158
649991
1654603
659009
663224
667262
671134
680162
688369
695873
702771
709139
715044
725669
734989
743252
750549
757321
763382
768921
774011
778710
783067
814305
833411
846725
.856729
864627
.871083
876498
.881132
947197

Q=3
R=4

.000000
040784
077694
111118
141427
.168964
194042
216942
237915
257179
274928
.291330
306531
320658
333823
346123
357643
368458
378633
388226
.397289
413999
429072
442752
455237
466691
477247
487015
496089
.504547
512456
519874
526849
.533425
.539638
545521
551103
556410
561462
566281
570884
576288
579505
583551
587435
591170
.599911
.607901
616245
622028
628321
.634180
.644789
654166
.662540
670084
676980
683185
.688932
694238
.699160
730744
737234
758323
773335
.784806
.793988
.801582
.808018
813575
.899817

=
(I}
—

000000
076130
.145016
207350
263762
314832
.361088
403014
441051
475598
507019
535638
561747
586608
.607453
627491
645905
662858
678497
692951
706334

.730286
.751041
769148
785047

811562
822699
832591
.841597
.849849
857266
864012
870196
875873
.881102
.885931
.890403
.894555
.898419
902022
.905390
.908544
911503
914284
916903
922823
927982
932515
936527
940102
943305
1948806
953354
957175
1960428
2963229
966666
967804
969696
.971380
972889
982287
986869
989575
1991359
992624
993567
.994296
994877
.999499

Q=4
R=2

.000000
.063442
120847
172795
219819
262410
.301020
367926
396940
423417
447630
469822
490211
508985
526313
542345
557210
571025
.583890
595898
517648
636814
653823
669014
.682563
694997
.706196
716411
725770
734377
742322
749681
756517
762886
768837
774410
779641
784564
789204
793587
797735
801567
805400
808950
812330
820119
827088
.833366
839058
844245
848996
857405
864630
870919
876453
881368
885770
.889740
.893343
.896631
.899647
.920329
932146

.939995
.945679
.950032
.953501

956347

958737

987516

Q=4
R=3

000000
054379
.103584
.148113
188429
224960
258100
288213
.315629
340644
.363523
.384502
403786
421560
437984
453199
467330
480485
492760
.504239
514998
.534609
552038
567636
581685
594412
606002
616909
626358
635365
643688
651434
658665
665408
671739
B77690
.683296
688689
693597
698344
.702851
707138
711222
715118
718840
722401
730668
738143
.744945
751168
756891
762177
771642
779895
787175
.793661
799490

.804765
809571

813974
818028
821778
.848419
864513

875645
883968

890514
895848
900313
904126
957820

000000
047581
090636
.129602
.164885
.196857
225897
.252298
.276361
.298347
.318488
.336991
354034
369777
384359
.397900
410570
422274
433283
443606
453306
471057
486915
501181
514095
.525851
536609
546498
555628
.564089
571959
579303
586177
592628
.598698
604423
.609835
614962
619827
.624452
628858
.633059
637073
640513
644592
648119
656344
663825
670669
676963
682780
688177
697903
706452
714049
720853
727024
732532
737770
742501
746877
750944
780389
798707
811650
821489
829335
.835803
841272
.845987
918108



in his car at a salvage value of $ 6,000 when he picks up his new car after the 4-week period. Substituting

these values of the decision parameters into (13), we get

V(4)=10000—1{(2)(4) [17(1+1)] (10000—5000) ' -+ (10000— 6000) '}
=9047.62

Consequently, the optimal threshold value, when the time remaining is 4 weeks, is $9,047.62.

When q7 1, however, we compute approximate numerical solutions to (11). For some selected beta dist-
ribution parameters (combinations of q=2, 3, 0or 4 and r=1, 2, 3, or 4), numerical solutions are computed
using the Taylor series expansion, (14). The results are presented in Table 2.

Here is how the values in Table 2 are generated. We first rewrite (11) in terms of t and E(z). Here,
T=At Is a standard time measure representing the expected number of offers to arise at a rate of A during
the remaining time t, and E(x) =[V(t=1/A) —AI/(B—A) is the standardized maximum expected return
at t=AL Rewriting (11) is equivalent to replacing dV(t)/(B—A) and Adt by dE(x) and dt, respectively.

Next, obtain the second and the third order derivatives of E(z) by differentiating the rewritten equation
twice with respect to t, and then include them in the following approximate Taylor series of E(t+h) with

center at T -

E(t+h)=E(0)+h dE(t)/dt+ (h?/2) d?E(x)/de +(h'/6) d*E(v)/d? (14)

As an initial increment, h is set to .0001 when t=0. Then at each iteration, h is increased in proportion
to LECx+h) —E(x)] '. It takes about 10,000 iterations to compute up to E(t=1000) with a six digit accu-
racy. (Accuracy of numerical solutions is based on the case g=1 where analytical solutions are available).

Note that in Table 2, E(0) is set to zero, that is, V(0)=S is assumed to be equal to A. Thus, when
S>A, we need to shift (reset) the time origin by an appropriate amount. (Shifting the time origin is the
only necessary adjustment since V(t+8t) in (9) is determined by V(t) and &t but not directly by t).

Suppose that the seller in the previous example had no acceptable offer during the first week, and that
he now has a better idea about the price offer distribution. Accordingly he updates his decision parameters
to t=3, q=3, and r=2. This time the seller wants V(t=3) =A+ (B—A)E(x=At=6), but, as before, V(0)
=5=$6,000>$5000=A and E(0)=(S—A)/(B—A)=1/5. According to the unadjusted time measure t

in Table 2, it takes approximately .4 units to reach the seller’s standardized salvage value of .2 (.197925
when t=.4), and an additional At=6 units of t brings the standard expected value to .760431. Therefore,
the seller’ s approximate threshold value in this case is :

V(t=3)=A+ (B—A)(.760431) = $ 8,802.16.

(More accurate values, computed by rerunning the numerical integration procedure with an initial value
of E(0)=.2, are E(6)=.760541 and V(3)= $8802.71).

It is noted that even when g1 we can still solve (11), at least for some beta parameters, and convert
the differential equation to a non-differential equation of V(t). For example, when q=2 and r=1, solving

(11), we get
- [V(t) —S](B—A) N 1 | [2B+V(t) —3A1/(2B+S—3A)
B-V)(B-S) 3 %8 [B—V(t) /(B—S)



5. Non-Homogeneous Poisson Arrival Of Offers

Consider the case of a fixed amount of time as in section 4. This time, however, we allow a time depen-

dent rate of offer arrivals. For example, more offers arise just after a house is listed for sale, and gradually
fewer offers arise as time elapses.

Define

m(t) =expected number of offers to arise during the remaining time t, and
A =dm(t)/dt

=time dependent arrival rate of offers.

We require m(t) to be non-negative, continuous, and differentiable with a finite first derivative.

All that is needed for the non-homogeneous extension is to replace Adt in (10) and (11) with dm(t)=x
(t)dt. When q=1, this replacement leads to an analytical solution like (13), with At replaced by m(t). Li-
kewise, when g1, use t=m(t) as the standard time measure instead of using its homogeneous counter-
part, t=At. (Actually, we could have formulated (9) using m(t) or A(t) to begin with like Blum [3] did.
Then, in the special case of time independent (homogeneous) Poisson arrival processes, m{t) and dm(t)
simply reduce to At and Adt, respectively).

Back to the example in section 4. Suppose the seller anticipated m(t) =t*/2 or Ar(t) =t, instead of A(t) =
2. In other words, the rate of offer arrivals is expected to decrease from 4 to 0 offers per week as the
remaining time decreases from 4 to 0 weeks. In the first part of the example, where t=4, replacing At=
(2)(4) =8 with m(t) =4%/2=8 makes no difference, and does not alter the threshold value. However, in
the second part of the example, where t=3, t=m(3)=3%2=45 is no longer the same as the previous
t=at=(2)(3)=6. The seller’s approximate threshold value this time is

V{t=3)=A+(B—A)(.721047) = $ 8,605.24.

(More accurate values, computed by rerunning the numerical procedure with an initial value of E(0) =2,
are E(4.5)=.721214 and V(3)= $8606.07).

6. The Case Of Unlimited Amount Of Time
(Continuous Time, Infinite Horizon Policy)

In this case, the seller has no deadline by which his asset must be sold, but there is a cost of C" mone-
tary units per unit time instead. As in section 4, we assume Poisson arrival of offers with a constant rate
A

Now we modify (9) by subtracting C’8t from the right hand side. This leads to the following -
dv(/adt = o [x—= V] f(x) dx — C' /A (15)

As was in the discrete counterpart (section 3), it is assumed that C' /A <, [x—V(0)] f(x) dx, othe-
rwise it is not worth it to pay the cost to receive offers.
Let C=C"/A and denote the limit of V(t) as t approaches infinity by V.. Then, (15) becomes

B
C=J (x—V.) f(x) dx (16)



Note that (16) is exactly indentical to (5). (C in (16), though, is the “average” cost to receive another
offer.) This implies that, when q=1, (8) is the closed form solution to (16) as well as to (5) : for gr=2,
3 and 4, Table 1 still provides approximate numerical solutions to (16) as well 5 and when g=2 and r=1,
V. =A+(B—A)2cos(8+4n/3), where 8=(1/3)cos ' (15C—1).

For the rest of the beta parameter combinations, perhaps the easiest way to find V. is to use (4) and
to peform about 10 iterations, as suggested in section 3. (Since (16) is identical to (5), the limit of V(t)
in (15) is the same as the limit of V, in {(4) when the value of C'/A in (15) equals the value of C in
(4))

For example, if C" = $ 1,152/week and A=2 offers/week, then C=C' /A= $ 576/offer, which is the same
value for C as in section 3's example. As a result, the seller ends up with the same maximum net expec-
ted values as hefore I V. = $7,600 if g=r=1, and V. = $7,100 if q=r=4.

7. The Case With Both Deadline And Cost

Consider the case with both a deadline (section 4) and a cost C' per unit time (section 6). In this

case, the only analytical solution we found thus far is for q=r=1 (uniform), which is :

2C
B—A

V(t)=B—C* coth {L[)\t —log( B~
2 B-—
where C* =\/2(B=A)C and C=C’/i
For the rest of the beta parameter combinations, one can rely on the numerical procedure similar to
that in section 4, but, this time, including the cost factor. In other words, derivatives to be included in
the approximate Taylor series, (14), should be based on (15).
It should be noted that Mamer's [10] recent paper deals with the case having both a deadline and
a cost. However, he suggests a discrete time approximation of the continuous time decision problem, pe-

rhaps as a result of mixing a discrete type cost with a4 continuous time decision process.

8. Extensions

We conclude this paper by briefly indicating two variations of the preceding models. We first relate the
infinite horizon, single-asset liquidation problem (sections 3 and 6) to the problem of an infinite sequence
of buy-sell processes. (A similar problem can be found in [6].) Then, we examine the problem of selling
several indentical assets by a fixed deadline (cf. section 4). (Various different settings of the multi-asset
case can be found in [3, 8 10].)

8.1. Infinite Horizon Buy-Sell Sequence

The infinite horizon case, discussed in sections 3 and b, is a onetime asset liquidation problem. A natural
variation of this is the problem of an infinite sequence of repeated buy-sell processes.

Suppose the seller, immediately after selling an asset, can now buy an identical asset at a cost of S.
(In other sections, S is referred to as the salvage value.) The objective in this case is to maximize the
expected profit per unit time.

The optimal solution to this problem turns out to be trivial, though intuitively appealing. The seller
should accept any price offer which is at least S since the seller can immediately buy another identical



asset for S. B B

As before, it is assumed that C<f (x—S) f(x) dx. As a matter of fact, the difference, | (x —S) f
(x) dx—C, between the maximum eXpected marginal revenue from receiving another offer and the cost
(average cost in the continuous case) to receive another offer, is theBmaximum expected marginal profit
from receiving another offer. Furthermore, in the continuous case, Al (x—9) f(x) dx—C' is the maxi-
mum expected profit per unit time. S

8.2. Selling Several Indentical Assets by Deadline

Suppose the seller in section 4 had several indentical assets to sell by a fixed deadline. Let V. (t) be
maximum expected value of m assets when the remaining time is t, where m is a finite non-negative inte-
ger, V, () =0, and V,, (0)=mS.

We will formulate the equation for V, (t), which reduces to (9) when m=1. This time, however, a semi-
formal proof of optimality condition is provided as follows © Suppose y is the seller’s current threshold,
then

B
V,, (t+dt) = (1—adt) V., (O +adt {]‘)‘;Vm ) f(x) dx+f [x+V, (07 f(x) dx}
v

B
AV, (O/dt=A {x— V. (0 =V, 1 (D]} {(x) dx (18)
y

Here, we are seeking the optimal threshold, y*, which maximizes V., (t+6t), given the maximum expected
values at t, Vu (t) and V,, 1 (t). In other words, we want y* such that dV,, (t)/dt is maximized. We set

the first derivative of (18), with respect to y, at zero, and solve for y.

—My—IVa (0 =V, (D} 1) =0
y* =V, (0—V, (1)

This y* maximizes dV. (t)/dt since the second derivative of (18), with respect to y, is negative when
y=y*, that is, —Af(y" )<O0.
Note that in section 4, where m=1 and V, () =V(t), y*=V, (t) =V, (1) =Vt —0=V(D).

APPENDIX : What if S < A7

Thus far the salvage value (S) is assumed to be greater than or equal to the minimum price offer (A).
However, it is also possible, though less likely, that S<A. The only difference now when S<A is that V.
in (1), (4) or V() in (10), (15) can be less than A. In fact, when we carried out the integrals in (1),
(4), (10), (15) using the binomial expansion, we implicitly assumed that V,= A or V(1) =A, because S=2A.
This implicit assumption is no longer valid when (but only when) V. <A or V(t)<A.

If S<A, it is obvious that the seller in section 2 will never reject the last offer. According to (D, V,
in this case is simply the expected value of X. Denote the expected value of X by E(X). Then, V; =E(X)
=(Bq+Ar)/(q+r). However, the rest of Vo, n=2, 3, *, can now be obtained from (2) or (3), since
Vi A

Likewise. according to (4), V; =E(X) —C, when V, =S<A. As in section 3, it is assumed that C<E(X)



—S in order to guarantee V, >S. Moreover, if C<E(X) A, then V,= A and, once V,Z A, the rest of
Vi, n=2, 3, -*, can now be obtained by the usual methods used in section 3. In this case, it makes no
difference whether SZA or S<A, as long as the limiting value V. is concerned. If, however, C>E(X) — A
(but C<E(X)—S, as assumed), then A>V, (>S). Since V| <A this time, according to (4), V, =E(X)—C,
which is the same as V,. In fact, when C>E(X)—A, V, =V, =V. =E(X) —C.

The general equation for all continuous-time problems is (15), where it is assumed that C<E(X)—$
in order for a positive rate of change of V(t) at t=0. When V(t) <A, (15) simply reduces to dV(t)/Adt=E
(X)=V(t)—C, and the solution of that is V(t)=[E(X)- C]—[E(X)—S—Clexp(—At). Now, if C>E(X)
—A, V(t) will never reach A, and the limiting value in this case is the same as that of the discrete-time
case, that is, V. =E(X) —C. On the other hand, if C<E(X)—A, V(t) reaches A at t=(1/M)log{[E(X)—
S—CJ/LE(X) —A—Cl}, and at this point we switch to the old equations and formulas derived for V(t)= A,
When we switch, however, we need to reset the time origin in such a way that the threshold value at
the new time origin equals A. In other words, every t in (11), (12), (13), (17) should be replaced by
(t=At), where At=(1/M1og{[E(X) —S~CI/LE(X) ~A- CJ}, and every S in (13), (17) by A. Similarly,
we replace T in Table 2 with (t— A1), where At=AAt Finally, no adjustment is necessary as long as

the limiting value V. is concerned.
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