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Generalized Maximum Likelihood Estimation
in a Multistate Stochastic Model

Sungchil Yeo*

ABSTRACT

Multistate survival data with censoring often arise in biomedical experiments. In particular, a four-state
space is used for cancer clinical trials. In a four-state space, each patient may either respond to a given
treatment and then relapse or may progress without responding. In this four-state space, a model which
combines the Markov and semi-Markov models is proposed. In this combined model, the generalized maxi-
mum likelihood estimators of the Markov and semi-Markov hazard functions are derived. These estimators

are illustrated for the data collected in a study of treatments for advanced breast cancer.

1. Introduction

In clinical trials and other medical studies, one may often be concerned with the evaluation
of two or more successive event times and their relationships to one another. For example, in
cancer clinical trials, people commonly study the time that a patient reaches a specific illness
state and the amount of time that the patient staves in that state. The statistical analysis of
such two or more time-dependent events is called multistate survival analysis.

Over the last few decades, various kinds of stochastic models have been proposed for analy-
zing multistate survival data by many people. Lagakos (1976, 1977) applied a homogeneous Ma-
rkov model to analyze survival data in the presence of auxiliary information. Temkin (1978)
considered a non-homogeneous Markov model and proposed the probability of being in respo-
nse function (PBRF) as a summary description for assessing the response to a treatment in
cancer clinical trials. Begg and Larson (1982) examined the properties of the PBRF based on
a homogeneous Markov model and demonstrated that the PBRF is a fairly complete description
of the effects of treatments. Aalen and Johansen (1978) suggested a product limit estimator and
studied its properties for the transition probabilities of a more general non-homogeneous Mar-
kov model with censored observations. Fleming (1978 a, b) also studied the same product limit
estimator based on the non-homogeneous Markov process as Aalen and Johansen (1978) stu-
died, but in the absence of censoring. On the other hand, to analyze data obtained from a cer-
tain clinical trials, Weiss and Zelen (1965) proposed a semi-Markov model. Lagakos et al.
(1978) suggested a nonparametric likelihood method for the analysis of partially censored data
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based on a semi-Markov process model. Nonparametric estimation for the semi-Markov process
was further developed in a more general setting by Gill (1980). Voelkel and Crowley (1984)
applied a counting process approach to some hierarchical semi-Markov processes and obtained
some useful asymptotic results for the PBRF. In this paper, we propose a combined model
which is an extension of the Markov and semi-Markov models. However, in order to simplify
ideas, we define our model only in a four-state space used by Temkin (1978) for clinical trials.

In a four-state space, all patients who start in an initial state, 0, may be assigned at random
to receive a drug treatment. Upon receiving this treatment, a patient’ s condition may either
deteriorate without showing any improvement (progressive state, 3) or may initially improve
(response state, 1) and afterward deteriorate (relapse state, 2). We assume that for any patient,
one of these transitions would occur with probability one, but that patient may be censored be-
fore the transition occurs. We also assume that no patients can be in the response state after
either progression or relapse. Figure 1 exhibits this four-state space. In Figure 1, R, S, and T
represent the patient’s time to the progressive, response, and relapse states, respectively. At

time t, the hazard rate is defined as follows :
1
()= lim —PG=S<t+h Sz
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Thus As(7) represents the instantaneous rate of transition to the response state at time t, co-
nditional upon the patient’s survival until time t. The hazard rate A«(r) can be described simi-
larly. The conditional hazard rate is defined as follows :
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Figure 1. Four-state space

Thus A{7 | s) specifies the instantaneous rate of transition at time t to the relapse state, con-
ditional on having entered the response state at time s and survival until time t. In this four-
state space, homogeneous Markov, non-homogeneous Markov, and semi-Markov models, as well
as our “combined model”, can now be described in terms of hazard rates, completely analogous



to the transition probabilities in a more general stochastic process. If A{r 1 s), A(z). and A()
are constants, then the model is said to be a homogeneous Markov model. If A(s | s)=n.(1),
a function of t only, then the model is said to be 2 non-homogeneous Markov model. If A(z | s)
=hw(r—5). a function of t—s, then the model ic said to be a semi-Markov model. Now the
combined model proposed in this paper is defined as follows :

)\(f ‘ .\')i }\,u(l) -+ )\\‘\1(1_.\'), R 4 (1.3)
The model (1.3) can be motivated if the patient” « condition, after reaching the response state,
depends on both “absolute time”, the time since the start of the study, and “duration time”,
the time elapsed since the entry into the present state. Figure 2 illustrates the homogeneous

Markov, non-homogeneous Markov, and semi-Markov models as well as the combined model
in four-state space.
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Figure 2. Four models in four-state space



2. Generalized Maximum Likelihood Estimation for the combined model

In this section, we derive the generalized maximum likelihood estimators (GMLE) of the
Markov and semi-Markov hazard functions in the combined model. Before we obtain the
GMLE’s, we review the definition of the GMLE and give several example.

In the usual parametric models, the observed data x has a probability measure such that

dPs (x)
du (x)

= £,(x), @D

where, p is a dominating measure for the family of probality measure . Then the maximum
likelihood estimator (MLE) of © is defined as the value which maximizes (2.1). In nonparamet-
ric models, the observed data x has a probability measure which depends on the unknown dist-
ribution function F. For a nondominated family of probability measures 4, the usual likelihood
is not defined. Thus, we need a more general definition of maximum likelihood estimation.

Kiefer and Wolfowitz (1956) suggested that for a nondominated family of probability measu-
res #, one can define a generalized maximum likelihood estimator as follows. For P, and P: in
2, define

. _ dP,
f &3 PP ZPPY (0. 2

the Radon-Nikodym derivative of P, with respect to P.+P.. If x represents the observed data,
then P is a GMLE if

§f GiP,P)zf & P,P)  forallPe¥ 23

A distribution function F is said to be a GMLE if f induced by the probability measure P.
The definition (2.3) of the GMLE reduces to the usual definition (2.1) of the MLE if 2 is
dominated by the o-finite measure p.

Johansen (1978) pointed out that if P gives positive probability to the observed data x, then
f(x: P, P)=0 unless P also gives positive probability to x. Thus, in order to check (2.3), it
is enough to check it for those P e  with P|x}>0 provided that the family of such P is none-
mpty. In this case, (2.3) reduces to

P ix}=P I}. X))

There are several examples for the GMLE’ s. The empirical distribution function F, (t)=(nu-
mbers of X,<t)/n is the GMLE of F in the class of all distribution functions. This estimator
is unbiased, consistent, and asymptotically normal. Johansen (1978) showed that the product
limit estimator suggested by Kaplan and Meier (1958) is the GMLE of F in the class of all
survival functions with censored observations. Peterson (1977) showed that the product limit
estimator is strongly consistent. Breslow and Crowly (1974) established the asymptotic norma-
lity of this estimator. In nonparametric inference for multistate survival data, Voelkel (1980)



showed that the GMLE's of the cumulative Markov and semi-Markov hazard functions in the
purely Markov and purely semi-Markov model, respectively, are consistent and asymptotically
normal, although he did not use the generalized maximum likelihood estimation method.

We now derive the GMLE’s of the cumulative Markov and semi-Markov hazard functions
in the combined model. In section 1, the combined model (1.3) was described for the conti-
nuous case. However, if we define the combined model only for the continuous case, then the
GMLE’s of Fu(r) and Fu(u) do not exist. Thus, in order to obtain the GMLE's of F.(s) and
Fw(u). we rewrite the combined model in terms of survival functions so that the model inclu-
des both continuous and discrete cases. Define the combined model as

= F\/(f) —

F(lys)= m Fo(t—s), 0=s<rcoo, (25
where F..(t) and F.,(u) are the survival functions corresponding to the Markov and semi-Mar-
kov hazard functions A(r) and Aw(u). respectively. If the underlying distributions of then mo-
del (25) are continuous, then the model (2.5) reduces to the model (1.3). If the underlying
distributions of the model (2.5) are discrete, then the model (2.5) can be written in terms of
hazard functions by

I=AG ) == M (1)) (1= gy =20, 0<s<t<w. (2.6)

We now proceed to find the nonparametric likeiihood for four-state survival data. Suppose
there are n patients in the initial state at time 0. Let r.. s, and 1, be the i" patient’s times
to the progressive, response, and relapse states, respectively. As usual, we cannot observe .
si, and + completely. To include censoring, we assume that the censoring times are univariate,
that is, the censoring times for the periods from one state to next state are identical. Let ¢ be
the censoring time of the i" patient. Then the observations on n patients consist of the pairs
(Wi, X, v, 8. 8., 84), 1=1,2,*.n, where w,=rA¢,, x.=sAc, »=tac, 8=ls=¢], &=[1
=cl, 8:=[r=c¢], and where x Ay denotes min (v ¥), and [4] denotes the indicator func-
tion of the set A. We also assume that the observed vector of transition times (r.. s, 1)
and the censoring time ¢, are independent for each /. Then, the nonparametric likelihood for

four-state survival data is proportional to
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where FG+0)= lim F(t+#), and where d F() equals —F (1) if F(1) is absolutely
h—0"

continuous at ¢ and F(1) —F(+0)if F() has a jump at

Since each product term in (2.7) involves onlv one of the functions Fv( + ). F.(+). and F
(+]), L is maximized by maximizing each product term in (2.7). However, since we are mainly
interested in finding estimators of Au( ). and Aw( ). we only need to maximize the part
of the likelihood for the period from response to relapse, which is proportional to

Le=TT (FGoA0 1x) 1301780 d E e L)oo, 28

Based on (2.8). the GMLE's of Ay( +) and A.( ) are provided by the following theorem.

Theorem 2.1. Under the combined model (25) if at least one patient is observed to relapse,
then the GMLE's of Ay( - ) and Aw( ) are as follows -

Aun= £ 18, Ly <l (29)
and
A \,'u(ll)j i j\'\,‘" 3, [ZJ <ll] , (31(})

where if A 7B, . then

=20l < B
' A <B.s (21
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A= "1[4,<B]1, 212
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and if 4, =B, A" and A" may be any values between 0 and 1 such that

(1-A M (112‘,”)r1—1. (213
A,
and where,
‘4/: /,‘2' S/V [X|§y ;'/—:YJ N (2]4)
B= % 8 [g=2]. 5 7y —x. (2.15)

If no patients are observed to relapse. then the GMLE"s are not defined.

In (2.14) and (2.15), 4, is the number of patients at risk in state 1 just before time y,. and
B, is the number of patients whose duration time in state 1 is at least z,. In Theorem 2.1, when



4;=B;, the GMLE"s of Au(r) and Aw(u) are not unique. In this situation, two convenient choi-
ces for A¥and A% are A=8,/4. A=0 and 2V =0, AM=8,/4,. If we take A1=8,/4,.
A=0 when 4,=B, the GMLE's of Au(t) and Aw(u) are as follows :

. 8, 8
A= B2 10 < B [ <] (2.16)
A,
and
~ n 61/ 8},
A\',u(ll): z - [A,)B,] [Z,(MJ . 217
i B,

For the special cases, under the purely Markov and purely semi-Markov models, the correspon-
ding GMLE’s of Ay(r) and A.,(u) are

. . 8,8,
Aun=3%2

Ly, < 1] (2.18)

and

w0, 8

A .\'11(1/) = ,21 [Z‘ < ll] ) (3./9)

respectively.

The following lemma will be needed for the prooi of Theorem 2.1. Its proof is given in Appe-
ndix A.

Lemma 2.1. Let A, B, and & be constants such thot min(A, B) 1 and § is either 0 or 1. De-
fine

1
1=a) (1-p)

gla B)= 8in (
(2.20)
FAW(1—a)+BIn(1-8) .

where o and B are unknown parameters in [0, 1). Then the maximum of ¢la, B) is attained
at (a,B), where if A#B, then

- 8 T _
o= —[A<B]. p=—=[A>B].
A B

and if A=B, then a and B may be any values in [0, 1) such that

. R )
=) (1=B) = 1— —-.
A
We now prove Theorem 2.1.
Proof of Theorem 2.1: Under the combined model (2.5), (2.8) can be written as
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In (2.21), as Johansen (1978) pointed out, in crder to find the GMLE's of Fu(r) and Fuu) .
we only need to consider Fu(t) and Fuw(u) with jumps only at the observed transition times.

Let
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M(p) and A =Aiw(z). Then (221) implies that
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If we take the logarithm of Le in (2.24), then (2.24) implies that
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From (2.14) and (2.15), (2.25) can be rewritten a-

1

] = ): {8, 6;,/)1(—”-—S_—\- -1
+8,4,In (1—A}Y) + 8B, (1— 1)}
Define, for each j,
. R 1
g AN =8, ln (—————————-—1)
(1= =13
+A4,in (1-27) + B, (1 -13)
Then (2.26) reduces to
InLg= % & g (WA (2.27)

Since we are interested in finding pairs ( A’ A}) which maximize (2.27) and since the (
A M) "s have no relationship with each other, it suffices to fine A and A which maximi-

zes g (A &) is attained at (A7 A™) which is given by (2.11), (2.12), and (2.13). Thus, the
GMLE’s of Fu(r). and Fa(u). are

Fu)= I Q=i
<
& §,=1/



and

f-;\'u ()= H (175;\,”)
<
& 8y=1

Therefore, the corresponding GMLE's of Au(/) and Aw(u) are given by (2.9) and (2.10).

3. Example

In this section, we illustrate the GMLE s for certain actual data (Hsieh (1980)). In a clinical
trial performed at the Wisconsin Clinical Cancer Center, 135 patients with advanced breast can-
cer were treated. Of the 135 patients, 55 were treated with Dibromodulcitol and Adriamycin
(DA), and 80 were treated with Dibromodulcitol, Adriamycin, and Tamoxifen (DAT). In this
study, the ECOG (Eastern Cooperative Oncology Group) criteria were ‘used to evaluate each
patient” s response. Among the 55 DA patients, 18 relapsed after having responded. 2 responded
without relapse, and 35 progressed. Among the 80 DAT patients, 24 relapsed after having res-
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Figure 3
Gmles of the cumulative markov and semimarkov
hazard functions in the combined model.
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Now if we differentiate h™(u) with respect to u, then

dh* (W) 8 n A—3d
du u—1 u ) (4.5

Solving dh*(u)/du=0, we obtain u=1-—38/A. Since d-h*(u)/du <0 at u=1—38/A, the maximum
of h*(u) is attained at u=1-8/A. Therefore the maximum of h(u, w) is attained at u=1-38/A
and w=1. In this case, the maximum of g(a.B) is attained at a=5/A and B=0.

Case 2° A>B.

By the same arguments as Case 1, the maximum of g(a, B) is attained at a=0 and $=8/B.

Case 3. A=B.
From (A.1), h{u. w) reduces to
h* ()= 6m(1—w) +(A4—8)nu. (4.6)
Thus, from the results of Case 1, h*(u) has the maximum value at u=1—-8/A. In this case,

the maximum of g(a, B) is attained at any pairs (&, p) in [0,1) such that (1—a) (1-B)=1
—8/A.

Appendix B

Table 1. Advanced Breast Cancer Data *

Number s T U et
1 199 458 259 0
2 84 399 315 1
3 84 196 112 1
4 31 119 88 1
5 -1 55 -1 1
6 -1 98 -1 1
7 28 167 139 1
8 28 231 203 1
9 -1 84 -1 1

10 21 180 159 1
11 28 315 287 1
12 59 171 112 1
13 87 150 63 1
14 28 343 315 0
15 259 555 296 0
16 31 191 160 1
17 —1 28 -1 1
18 —1 141 -1 1
19 28 941 913 0
20 -1 38 -1 1



Patient’s
Number

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

-1

-1
56
59
-1
28
143
-1
—1

80
37
112
91
—1
—1
28
56
31

56

38
93
103
-1
-1

112
-1

-1

-1
-1
119
58
28
-1
—1
81
175
—1
27
—1

-1
86
—1

42
87
28
504
199
114
175
255
84
476
99
283
326
337
364
71

47
126
970
143

85
462
154

1290
211
390

37
98
1127
182
112
259
28
59
63
125
336
540
191
168
60
193
627
80
582
32
279
o6
597
84

203
289
225
273
-1
—1
98
914
112
-1
406
70
1252
118
287

Censoring
Code
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&k

10.

11.

72 —1 22 -1 1
73 111 334 223 0
74 -1 122 -1 1
75 —1 35 —1 1
76 o6 259 203 1
77 -1 28 -1 1
78 -1 11 -1 1
79 140 1134 994 0

1

80 -1 63 —1

S=time to reponse (in days) 3

T=time to progression (relapse) or censoring (in days) :
U=duration of response {in days) :

Censoring Code © 1= progression or relapse, 0= censoring.
—1=no response.
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