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Abstract

A basic formulation of the panel method, which is based on the potential field formulation,
is reviewed for the case of two-dimensional hydrofoil problems. Numerical procedures to im-
prove the computational efficiency of the panel method are suggested.

By investigating local behavior of the flow around the trailing edge, a wedge type Kutta
condition is formulated. By subdividing the trailing edge panels, where dipole strengths of the
subdivided panels follow the local behavior of the potential values of the flow outside a
wedge, the circulation around a hydrofoil is calculated accurately with a relatively small
number of panels. The subdividing technique to improve the accuracy of the numerical Kutta
condition is proved to be efficient.

A local behavior of the flow around the leading edge is also investigated. By matching the
flow around the leading edge with that around a parabola, a very accurate velocity distribu-
tion is obtained with relatively small number of panels. An accurate prediction of the stagna-
tion point and the pressure distribution near the leading edge may contribute to improve the

accuracy of cavity predictions and boundary layer calculations around hydrofoils.
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1. Introduction

Pane! methods have been in use for certain aero-
dynamic/hydrodynamic applications since Hess(2]
proposed the surface source method in 1964. Since
then, various other formulations have appeared
which effer advantages in terms of accuracy, com-
(61, (53, (3]
Although all the properly formulated panel methods

putational efficiency or versatility.

are exact in the sense that the numerical solutions
converge to the common solution as the number of
panels is increased, this does not imply that all the
panel methods are equally successful. Indeed, vast
differences exist with respect to the prediction accu-
racy versus computational effort, reliability and
simplicity. Recently a comprehensive study of the
field of panel methods has been conducted by Leel(4)

in order to determine the most suitable formulation

p(z,v,2)

q(f,ﬂ:d fn
VI,¢I
Sp

Fig. 1 Notation for a general body for the appli-
cation of Green’'s theorem.
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for the application to marine propellers.

In this paper basic formulations and numerical
procedures of the panel method, which is based on
the potential field formulation, are reviewed for the
case of two-dimensional hydrofoil problems. A
special attention is given to the local behavior of
the flow near the trailing edge. Magnified flow near
the trailing edge resembles the flow outside a wedge.
Using the analytic potential expression for the
wedge flow, a new numerical implementation of the
Kutta condition, which include a correction term to
the usual numerical Kutta condition first used by
Morino[6), is suggested. (will be described in the
subsequent section)

To improve the numerical efficiency of the panel
method, a subdividing techniques is applied for the
panels near the trailing edge. The four panels near
the trailing edge are subdivided into subpanels
whose potential values are matched to the local
behavior of the wedge flow. As a result the global
circulation around a hydrofoil can be calculated
accurately with a relatively small number of panels.

The local behavior of surface velocity around
the leading edge of a hydrofoil is also investigated,
which is similar to that of surface velocity around
the parabola osculating a circle with the same lea-
ding edge radius. By matching the flow around a
leading edge with that around a parabola, pressure
distribution around the leading edge can be calcu-
lated with great resolution even with small number
of panels. The local stagnation point and the pres-
sure peak value nearthe leading edge are calculated

very accurately.

2. Basic theory

Consider a two dimensiopal fluid domain V enc-
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losed with boundary S, the unit normal vector #

to S being oriented into V, as shown in Fig. 1.
The boundary S is
Sz, the wake
S.. surrounding the body and wake surface. The

body is subject to the inflow velocity U... With the

composed of the body surface

surface Sy, and the outer surface

assumptions of the incompressible, inviscid fluid,
and the irrotational flow in V, there exists a per-
turbation velocity potential ¢ which satisfies the
Laplace equation,
Pip=0. ¢))
A boundary value problem can be constructed
by specifying boundary conditions on the boundary

S as follows:

The kinematic boundary condition should be
satisfied on the solid body surface Ss,
__a.?_:—ﬁm.ﬁ. (2)

on

The wake surface Sy is assumed to have zero

thickness and has a normal vector defined on the

upper surface. The normal velocity jump Ag—i and

the pressure jump 4p across Sy is zero, while a

jump in the potential, denoted as 44, is allowed.

(49) on sv=p"—p"=0, ®
(5 =B (R0

Where the superscripts + and — denote the upper
and lower wake surfaces, respectively.

A Kutta condition is required at the trailing edge
to uniquely specify the circulation. In its most
general form, it states that the flow velocity at the
trailing edge remains bounded: i.e.,

Pglr. oo (5)

The Kutta condition can be implemented by in-
troducing a cut from the trailing edge to the outer
control surface S.. By introducing the cut on the
wake surface, where the actual cut geometry is not
important for a steady case, the potential values
around the body becomes unique. The potential
jump 4¢ across the wake surface is the same as the
circulation, I, around the body, and is a constant
on Sw.

(49)on se=¢*—¢~=T" 6

On the outer control surface S., the perturbation
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velocity due to the body should vanish in the limit
where this surface is an infinite distance from the
body.
4¢—0, as S.—oo (D
Green’s theorem for the velocity potential on the
body surface can be stated as (see Leel4])

5= 6252 log R(z,0)

~-2%_log R(p, )] ds

log R(p, g)ds,
®
Where %log R(p,q) is the induced velocity

ong
1 >
2n fsquS(Q) ong

potential at field point p due to a source of unit

[
ong

strength located at g, and 2—1 log R(p,q) is

that due to a doublet of unit strength.

The body geometry is replaced by an N-faced
inscribed polygon, where N is the number of pan-
els, as shown in Fig. 2. A logical choice for the
panel arrangement is a cesine spacing, where mean
line ordinate and thickness are first evaluated at

the following points along the nose-tail line,
=< 220 =1 ) =19, ...
z; 2@+m{ - »J 1,2, -, N/2+1.

)]

The panel boundaries are then obtained by adding
and subtracting the half thickness of the section at
right angles to the mean line. The nodes are num-
bered in clockwise order, starting at the lower
trailing edge, and j-th panel, denoted as C;, is one
between nodes j and j+1.

Singularity strength distribution is assumed to be
piecewise constant over the panels. The collocation
the discretized

point, where integral equation is

- "

——— T
= EQ 3 2 kS

Fig. 2 Nomenclature of the panel methods for a
two-dimensional foil
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satisfied, is selected as the midpoint of each panel.
Then the discretized form of Equation 8 is

N e (BN =19, .
l_Z=lDij¢j+ Wi(Aqs)waks—j; Sl]<—a_;‘>1 1'—‘17 27 ’ N

10)
where
D~=—1—f -2 log R(pi, q)ds, if i#j
ij o ¢; 0rtq iy 3
=5 if i=j,

Siy=—g [ log R(gi )ds,

_1 2
Wi 2 Sw 8nq

log R(p:, q)ds.

At this point a numerical Kutta condition should
be stated to uniquely specify the circulation. Acco-
rding to Morino(6), a Kutta condition may be
written as the potential jump in the wake be equal
to the difference of potential values of the upper
and lower panels at the trailing edge,

(4¢) ware=9Pn—1. v

This numerical implementation of the Kutta
condition will be denoted as Morino’s Kutta con-
dition afterwards. In Section 3, a different nume-
rical treatment of Kutta condition will be shown
to be more efficient.

This results in a system of linear equations for

the unknown potential values.

N
z;lA,-,-¢,-=b.-, i=1,2, N 12)
= .
where A:;=Di; ,if j#1 or N,
:-D,'_,'—W,' ,if j—_—'l,
=D;;+W; ,if j=N,
and b= S gi )i

Solution of Equation 12 yields the values of po-
tential on the panels, under the assumption that
the potential is constant on each panel. Surface
velocity is obtained by numerical differentiation
of the potential. A quadratic polynomial to the
values of potential at three panel midpoints is assu-
med, and the velocity at the panel midpoint is
obtained by differentiating it with respect to the
coordinate that is tangent to the panel. The arc-
length between two control points is approximated

as the sum of half lengths of the adjacent panels.

Jin-Tae Lee

Once the velocity is known, the pressure is cale-
ulated from Bernolli's equation, where the pressure
coefficient is defined as

O
7pUZ».

Forces and moments are then obtained by sum-
ming the force and moment on each panel. An
alternative lift coefficient, which is based on Kutta-
Joukowsky’s law, is calculated by

Cum =2 e,
7pU’.,c -

and the drage coefficient should be zero.
3. Local flow near the trailing edge

To obtain accurate results by panel methods, one
should increase the number of panels or use higher-
order panel methods. higher-order panel methods
use curved panels with singularity of higher-order
variations along those. As a consequence, higher-
order panel methods need more computing efforts
to calculate the influencec oefficients, while the same
aceuracy can be obtained simply by increasing the
number of panels for low order methods.

As the number of panels is increased to obtain an
accurate result, it is observed that the global lift
force can be predicted more accurately by using
finer panel arrangement near the trailing edge for
the same number of panels, which suggests modi-
fication of Morino’s Kutta condition.

If one restricts one’s attention to a hydrofoil with

finite trailing edge angle, then the local flow at the

Fig. 3 Analogy between the flow near trailing edge
and the corner flow
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trailing edge must resemble the flow about a wedge
with an inside angle 7 (see Fig. 3). Since the divi-
ding streamline leaves the foil as a bisector for a
steady two-dimensional hydrofoil, the flow outside

behaves like a corner flow with an included angle,
a—T
o
Define the distance on the wall from the corner
as s, then the total potential distribution along the
wall of the corner flow can be expressed as,
O()=bst=¢(s)+T.-5—C 13

where & is a surface velocity away from the corner,

< - %
1<e ey

By an analogy between the flow near the trai-

<2 and C is an arbitrary constant.

ling edge and the corner flow, the local behaviors
of the perturbation potential values at the upper
and lower surfaces near the trailing edge can be
expressed as
o*(s) =" —a“s+b*s* (14)
' (s)=g*—a's+b'se, (15)

— i hi
where a":UW.l-;—“T’ a’:ﬁ".T;’T and ¢.*, ¢1* are po-

tential values at the upper and lower corner of the
trailing edge, and correspond to the value of C in
Equation 13.

The (perturbation) potential values at the control
points of the last four panels near trailing edge
can be expressed as, (see Figure 4)

Sr=¢*—als,+b's\%, $:=¢"—a's;+b's,",

PN =Pu¥ —avsy+b*sy",

Sro1 =P —a*sy1+b*sno1. (16)
Since four more unknowns (¢, &, ¢u®, and &%)
have appeared in this formulation, the above four
equations are sufficient to complete the matrix equa-
tion. This numerical implementation of Kutta con-
dition will be denoted as wedge type Kutta con-
dition. Morino’s Kutta condition simply equate the
potential values at the trailing edge panel to that on
the wake surface, i.e.,

PL=¢¥s PNTu¥. an

Fig. 5 and 6 show the perturbation potential and
pressure distributions around a circular section at
90 degree angle of attack with different numerical

implemenations of Kutta condition imposed at the
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Fig. 4 Magnified view of the flow nea trailing edge

trailing edge. Abscissa of Fig. 5 is an arclength
around a foil surface, non-dimensionalized by the
total arclength. (s=0 denotes the lower trailing
edge) With Morino’s Kutta condition, the circula-
tion converges to about half the correct value
regardless of the panel density. With the wedge
type Kutta condition, the potential and pressure
distributions recover the analytic results. However
it should be noted that the difference between the
results by these two Kutta conditions becomes very
small for thin two-dimensional sections.

The previous example shows that a small discre-
tization error near the trailing edge may influence
the Kutta condition, and as a result, may result
in a global error in predicting the circulation. In
order to get a maximum accuracy for a given
number of panels, minimization of the discretiza-
tion errors near the trailing edge is essential. Since
the geometry can be approximated very closely by
straight panels near the trailing edge, most of the
discretization errors come from the stepwise appro-
ximation of the unknown dipole strength.

To minimize the discretization errors due to the
stepwise approximation of the dipole strength near
the trailing edge, each of the last four panels near
the trailing edge is subdivided into an odd number
of panels and the dipole strength (hence the poten-
tial values) on each subdivided panel follows the
behavior of a corner flow.

Fig. 7 shows the case where the last four panels

are subdivided into twelve subpanels. Equation 10
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an:
9]
(a1

Circle section (¥ = 40, a = $0deg)
— Analytic
G Morine Kutta
+ Wedge Kutta

™~

(%3

(8]
'

Fig. 5 Perturbation potential distribution for a
circular cylinder at 90 deg angle of attack

for i=1 (i.e. for control point no. 1) becomes
Dugr+Dyaga-t-- -+ Din-1pn-1+Dingn

+ Wi (g —¢1*) =b,.
Since the dipole

(18)
to the
upper tailing edge panel becomes biggest for the

influence coefficient due

control point in the lower trailing edge panel,

¢
w

(A} = ¢y — ¢

%3 I3 . ks
é, —cls=1st

w

the

Fig. 7 Subdivision of
(NTE=3)

trailing edge panels
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15.
r _ Circle section (N = 40,a = 90deg)
13 L -— Analytic J
2 Morino Kutta
r + Wedge Kutta -
11 - -
9 -
7 -
5 J
3 J
1 .
C =
e O
-1 N ‘4 i N : B o == . ‘!
g.0c 0.20 G.40 G.8C 0.g0 1.00
X/C

Fig. 6 Pressure distribution for a circular cylinder
at 90 deg angle of attack

Din_1pn-1 and Dinéy are replaced by
Div¢y=Dly ¢y+Diy ¢i+Diy 6}
Diy1gn—1=Diyo1 $h-1+Diy1 ¢k

+Diy-1 ¢¥-1, 19

where gv=¢% and ¢y.1=¢}_; and the superscripts
denote the subpanel numbers. (see Fig. 7) Similar
three other

equations can be written for control

points near the trailing edge. Since the dipole
strengths of the subpanels are related to those of
the trailing edge through

the main panels near

Equations 14 and 15, number of unknowns does
not increase.

The calculated lift coeflicients for a symmetrical
which has a

chord ratio of 0.17 and a trailing edge angle of 27

Karman-Trefftz section, thickness-
degrees, at 5 degree angle of attack, are compared
with the analytic lift coefficient in Table 1. The
case of NTE=1 means the wedge type Kutta con-
dition. As expected, fine discretization near the
trailing edge dramatically reduces the error of cal-

culated lift coefficient.
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Table 1 Effect of number
on the lift coefficient for a symmetric
Karman-Trefftz section(¢/c¢=0.17, r=27
deg, a=5deg, (CL)anar=0.3104)

of subdividing panels

Cr—(CL) unat

NT NTE C L A\“Llenal
L (CL) onat

20 Morino 0.287 ~7.4%
20 1 0.295 —4.9%
20 3 0.303 —2.3%
20 9 0.305 —1.8%
40 . Morino 0.298 —4,0%
40 ! 1 0.302 —2.8%
40 3 0. 306 ~1.5%
40 | 9 0.306 —1.4%
80 Morino 0.303 —2.4%
80 1 0. 306 —1.4%
80 | 5 0.308 —1.3%

4. Local flow around the leading edge

Detailed knowledge of the flow around the lea-
ding edge is very important since the location of
stagnation point and pressure distribution near the
leading edge are essential inputs for the calculation
of boundary layers on hydrofoils. Moreover the
pressure peak value is a guidance to decide whether
cavitation occurs. One of the important merits of
panel methods over vortex lattice methods is the
ability to calculate the flow quantities around the
leading edge.

Even though global circulation around a hydro-
foil can be calculated with a relatively small num-
ber of panels within an engineering accuracy, a
great number of panels are needed to obtain suffic-
ient resolution to pickup the pressure peak value at
the leading edge. A more efficient scheme to calcu-
late the detailed flow quantities around the leading
edge is to be devised. This can be achieved by
investigating the local behaviour of the flow near
the leading edge.

Magnifying the flow near the leading edge, it
resembles a flow around a parabola which osculates
a circle with leading edge radius, s(See Fig. 8).

KEEAREEIE F26% H I3 19894 9
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around the

of the flow

Fig. 8 Magnified view
leading edge
Equation of the parabola is
=2z, (20)
If a parameter ¢ is taken as
x
e
y= x/_qut’ (21)
then the incremental arclength of the foil surface

:tz’

can be expressed as

ds= VazFdy'=20,] i1+ Lar. @2

The flow outside the parabola has a dividing
streamline and has a stagnation point at x,, on the
foil lower surface. Surface velocity, ¢, around the

stagnation point at zs

\/—t ts—‘ (23)
1°

2

i +_

surface of the

osculating parabola with

can be written as [1]
q Tt x
Up ( z ) N

Total potential distribution on the

parabola is expressed as

o faq) ds dt—URth+ts' Zp\/tz_*_ldt

——~9[)UR( t2+tut+c> @4

where Ug is a reference inflow velocity in the local
magnified flow near the leading edge, and C is an
integral constant.

Since the potential values are obtained after sol-
ving the simultaneous equation (Equation 12),
three unknown flow parameters in Equation 24(i.e.
ts1, Ug, C) can be derived from the obtained poten-
tial values at control points near the leading edge.

The scheme adopted in this paer to obtain the three
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Fig. 9 Compariton of surface velocities around a leading edge of an elliptic section(¢/c=0.1, a=10deg)

unknown parameters is a least square method which
uses the potential values at the control points of
the four panels adjacent to the leading edge.

The effectiveness of Equation 24 is shown in
Fig. 9, where surface velocity distributions near
the leading edge of an elliptic section at 10 degree
incidence, which has a thickness-chord ratio of 10
percent, are shown. The solid line is an analytic
expression of the surface velocity and symbol-+is
the surface velocity from Equation 23. The three
flow parameters are obtained by a least square
fitting through the potential values at four control
points near the leading edge, which are calculated
with 40 panels. Note that the stagnation point and
the velocity peak value are predicted very accurately.

Fig. 10 shows an example for a relatively thin
cambered section which has a thickness-chord ratio
of 4 percent and a camber-chord ratio of 2 percent.
This NACA 66 (mod.) section is a typical hydrofoil
section used in marine propellers at 0.7 radius.
Since no analytic solution for this kind of section
is available, a convergence test is carried out by
increasing the number of panels. The result by 80

panels is indistinguishable from that by 160 panls.

less than 7
percent error in the predicted velocity peak values.

Even the result by 40 panels gives

5. Conclusions

A basic formulation of the potential based panel
method is reviewed for the case of two-dimensional
hydrofoil problems. Numerical procedures to improve
the compuutational efficiency of the panel method
are suggested.

By investigating local behavior of the flow around
the trailing edge, a wedge type Kutta condition is
formulated. The usual Morino’s Kutta condition is
found to have a fundamental error when the trai-
fixed by the

wedge type Kutta condition. Numerical results for

ling edge angle is large, which is
a circle section demonstrate the effectiveness of the
wedge type Kutta condition for sections with a large
trailing edge angle.

An efficient numerical procedure to improve the
numerical accuracy is suggested. By subdividing
the panels near the trailing edge, where dipole
strengths of the subdivided panels follow the beha-

vior of the potential values of the flow outside a

Journal of SNAK, Vol. 26, No. 8, September 1989



A Surface Panel Method for the Analysis of Hydrofoils with Emphasis on Local Flows-:- 49

2.p0 T T T T i T i 0 T ;
t.e0 |~ —
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Fig. 10 Comparison of surface velocities
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t= =

around a leading edge of a typical hydrofoil section(NACA 66

Mod.+2a=0.8, #/c=0.04, f/c=0.02, a=1.5deg) :

wedge, the circulation around a hydrofoil is calcu-

lated accurately with relatively small number of
panels. Numerical results for a Karman-Trefftz foil
section are given to prove the effectiveness of the
subdividing technique coupled with the wedge type
Kutta condition.

A local behavior of the low around the leading
edge is also investigated. By matching the flow
around the leading edge with that around a para-
bola, a very accurate velocity distribution is obtai-
ned with relatively small number of panels. The
analytic and calculated velocity distributions around
the leading edge is compared to show the effecti-
veness of the method for an elliptic section with
10 percent thickness-chord ratio. A convergence test
is performed for a typical foil section with 4 per-
cent thickness-chord ratio and 2 percent camber-
chord ratio. Accurate prediction of the stagnation
point and the pressure distribution near the leading
edge may contribute to improve the accuracy of the

boundary layer calculations around hydrofoils.
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