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Error Analysis Casued by Using the Dftin Numerical

Evaluation of Rayleigh’s Integral

Sun I. Kim

— Abstract—

Large bias errors which occur during a numerical evaluation of the Rayleigh”s integral is not

due to the replicated source problem but due to the coincidence of singularities of the Green’s

function and the sampling points in Fourier domain. We found that there is no replicated source

problem in evaluating the Rayleigh’s integral numerically by the reason of the periodic assumption

of the input sequence in DFT or by the periodic sampling of the Green’s function in the Fourier

domain. The wrap around error is not due to an overlap of the individual adjacent sources but

because of the undersampling of the Green’s function in the frequency domain. The replicated

and overlapped one is inverse Fourier transformed Green’s function rather than the source function.

1. Introduction

Several problems arise when we evaluate analog
signals numerically. Frequently, unexpected results
may occur unless one thoroughly understands the
basics of the discrete Fourier transform (DFT) and
pays attention to several things. These include alia-
sing due to undersampling, circular convolution and
windowing effect. Also, some confusion may easily
arise when evaluating continuous convolution inte-
grals numerically by using the DFT, especially,
when the integral kernels are given in both time
(or spatial) and frequency (or Fourier) domains
in analytical form. The evaluation of Rayleigh’s in-
tegral is a good example of such confusion. Earlier,
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Williams and Maynard! analyzed bias errors asso-
ciated with evaluation of the Rayleigh integral for
planar radiators using the FFT. Based on theoreti-
cal consideration, We propose an alternate explana-
tion for interpreting the bias error analysis.

2. Analysis

By the use of the Green’s function technique,
the Helmholtz equation can be used to calculate
a complex field from pressure or pressure gradient
data over a closed surface® . Rayleigh's integral is
a special case of the Helmholtz integral equation
which is the foundation of the theory of the radia-
tion from wave sources. Rayleigh's integral can be
represented in terms of pressure or pressure gra-
dient fields as source functions. The solution of
either of the Rayleigh integrals equals to the solu-
tion of scalar wave equation in a half space bounded

by an infinite plane with known boundary condition
3
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One of the Rayleigh’s integrals which relates the
field pressure distribution with source pressure
gradient, for the geometry shown in Fig.1, is given
by,

o —Exp(jkr
pxy,2)= ] | dx'dy v(x,y',0) _—ZT%J_)

—o

for 22 0, M

where R=[(x—x)2+ (y—y")2+ 212 the wave
number k=2n/A and p(x,y.z), v(x,y,2) represent
pressure and pressure gradient at position (x,y,z)
at time t, respectively. While the form of the integ-
ral is simple, the detailed computation of the field
remains a complicated one. It is time —consuming
to evaluate this integral by standard numerical te-
chniques. the fast Fourier transform algorithm can
be used to compute this integral at least 400 times
faster than numerical calculation using Simpson’s
rule!. To fully utilize the FFT algorithm, we need
to represent Eq.(1) in terms of Fourier transform
relations. Rewriting Eq.(1) in convolution integral
form at plane z=d, d=0

p(xy, ) =v(xvy,0) ** g(x,y d, )

where the symbol * * represents 2—dimensional
convolution and the Green's function g(x,y,d) is,

x A

direction of wave propagation

Fig. 1 Coordinate system for the Rayleigh’s integral

calculation.

g(x,y,d)= — Exp( jkr )/( 2nr) 3

and r=(x*+y*+d® V2 Taking the Fourier trans-
form of each side of Eq.(2) and using the convolu-

tion theorem yields,
p({,, f,.d)= v(f, £, 00 G f, d) (4)

Where the capital letter means the function is in
the Fourier domain. By Weyl’s intergral identity*,

Exp(kr) ‘-” L df,Exp[j(f;x+f;.)+jd(k2~f;2x—f§-2y)”2]
r 2n, 7 (k*—f, 2—£;5)"?
)

we obtain the Green’s function in Fourier domaitn,

Expljd(k*— K—k)"]

e T
G(fx,fy,d) = (6)
-dkE+ k=22
Exel d((ll;—ll:n lf) J for K<IZ+k

where k,=2nf,, k,=2nf, When k’<iZ+K, the
exponent gives strong attenuation and these waves

°. Multiplying the

are called evanescent waves
Green'’s function with Fourier transformed source
function V(f,, f,, 0) and applting inverse Fourier

transform, one obtains,
p(x, y, ) =FT '[V({, f, 0) G(f,f,0)] (7

Eq.(7) can be evaluated numerically by using the
discrete Fourier transform (DFT),

pa(mx, nyo, d)=DFT 'L V(pf., qfe, 0)
G(pfxn, qfvu, d) W(pfxn, qu)] ®)

where n,m,p and ¢=0,1,2 ---, N-1, and N is number
of samples. x, and y, are sampling intervals in spa-
tial domain on x and y axis, and fy, and f,, are
sampling intervals in Fourier domain on f, and f,

axis, respectively. W is a window function. We use
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" to distinguish discrete Fourier transformed seque-
nces from the sampled sequences that are formed
by digitizing the continuous function. As we see
in Eq.(8), the function G(f,, f,, d) is sampled in
the fourier domain with a sampling interval of f,,
and f,,. The sampling intervals are determined by
the spatial data length (or the width of spatial win-
dows) Ty and T, by,

foo= 1Ty, f,=1/Ty. (9

the width of the sampling window W in Fourier
domain is thus given by Tf,=Nf,, Tf.=Nf., The
procedure of elvaluating Eq. (8) is 1) discrete Fou-
rier transform v(mx, nys, 0), which is a the samp-
led and windowed version of continuous function
v(x, y, 0) at distance d=0, to get V(pfu, qfe, O),
then 2) multiply by the windowed and sampled
Green’s unction G(pfw, qf,s, d) W(pf., qfo, 0) and
3) talculate inverse DFT to get estimated Pd(m.,
my, d)

Because we need to use the notation for periodic
function later, let us define the discrete Fourier
series (DFS) of a periodic function f(mxo, ny,)
with period of T, T, and sampling interval xo, yo
in the x and y directions, respectively. For simpli-
city, we will consider the one dimensional case,
since the two dimensional case easily can be exten-
ded from the result. When f(x) is a inverse Fourier
transform of F(f,), the inverse DFS of I:‘(pkxo) is 6,

fm) =113, FPK.) ExplienNmp]  (10)

where ky,=2nf,=2n"T,, Tu=1/x,

f(mx) =3  f(mx+iT), (11)

and

(PK)=>" F(pka—1Th). (12)
1~ -

Here, the periodic functions }(mxo) and i‘(pkxo)
are aliased versions of non— periodic functions f
(mx,) and F(pk,,), respectively. As we know, the
DFT assumes that one finite sequence of discrete
data is a one period of an infinite sequence of period
T,. In this way the Fourier transform is evaluated.

Williams and Maynard! stated the evaluation of
Eq.(7) as,

p(x,y, d) =FTV(, £, 0) GUL, £, &) T (£, 1, f,
M) Wt/ Thy £,/ Tiy) (13)

where [Il is a sampling function and I an is window
function, following Bracewell's notation’. Applying
convolution theorem (really, the converse of the
convolution theorem) to Eq.(13) yields,

p(x, y, d=FT '[f, f, 0J*FT '[G(, {,, d)]*FT
CA(F /A, £/£)I**FT L I(f/Ty, £/Ti)]
= i i X0 Yo (X, y, 0) 8(x — mxo) 8(y — nyo)

*gx,y, &) **1/(T,T)) /T, y/T,)
**sinc(x/x(,, Y/YO).
If we write v(x, y) as,
un(x, Y):Z X Xo Yo v(X, y, 0) 8(x —mx¢) 8(y — nys),
(15)
then Eq.(14) becomes,
pix, y, )=A wn(x y)** MI(x/Ty, y/T)**gx, vy, d)
**sinc(x/Xg, ¥/¥o)
=AD DS wwx+iT., y+iT)

S

**g(x, y, d)** sinc(x/xe, y/Vo)

(16)

where A is some constant. Wiliams and Maynard
explained that the first convolution in last equation
of Eq.(16) leads to replicated sources with terms
VN(x+iTx,y+jTy), because the double summation
sums up all the replicated terms. They thought,
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since g(x,y,d) extends over all real space, that con-
volution suffers from wrapping around. Thus the
aliasing effect in Fourier domain is the same as
wrapping around in spatial domain.

We believe that there are misunderstandings in
interpreting Eq.(7) as Eq.(16). Even though the
sampling function and the window function are wri-
tten in separate forms, once the sampling and win-
dow function are multiplied with any infinite analog
function to be discrete Fourier transformed, it is
inappropriate to separate those terms as in Eq.(14)
and to combine them with any other arbitrary te-
rms. The sampling function [l and the window
function [l should stick with G{f,, f,, d). Thus it
is am isleading to interpret Eq.(16) as meaning that
there are replicated sources.

There still exists a large bias error in reconstruc-
ting object fields from source pressure gradient dis-
tributions and it happens under the same condi-
tions as given by Williams and Maynard®. This can
be explained as follows. First rewrite Eq.(8) in the
inverse DFTed form,

pa{mxa nye, d)= v(mxs, nye, 0)**L ;;(me, nyo, d)

**w(mxo, nys)] an

Obviously g(mxs, nyo, d)g(mxe, nys, d)for 0<mx,
£Tx, 0<ny,<T,. The aliased version of function g
(mxo, ny,, d) is equal to g(mx,, ny, d) only when the
continuous function g(x, y) is space limited within
T, and T,, which is not true in the case of Green’s
function as given in Eq. (3). Also notice that the
v(mxo, nyq, 0) recoverd from the original sequence
exactrly whether it is undersampled or not. Now.
v(mxy, nys, 0) is not “wrapped— around” as a result
of forward and inverse DFT operation. because the
original spatial function is tapered to zero outside
of the window. i. e. sptially limited. It is g{mx,, nys,
d) not v(mxy, nys, 0) which can cause bias errors
when we evaluationg E. q. (7) using the DFT to

estimate p(x, y, d). The Green’s function given in
Eq. (6) in frequency domain is virtually band— li-
mted function because the evanescent waves com-
ponent decays out fast. As a result, the Fourier
transform pair which is sampling therorem, the gi-
ven in Eq. (3) is not space-limited. Thus, according
to the sampling in frequency domain is always un-
dersampled.

In the following section, we will see how this
aliased version of Green’s function affects the reco-
nstruction result. Again, consider one dimensional
case for simplicity. The inverse DFTed Green's fu-
nction g(mx,) is an aliased version of g{mx,) given
in Eq.(3). According to Eq.(11), the aliased Green'’s

function can be written as,

g(mx,, )= g(mxe )= g(mx,+iT.) (18)
-1 Z‘: Exp{jk[(mx,+iT)*+ d’]**}
on T Cmx+iTy+d 17
When d=0,

1 & jk(mxo+ iT,
Ly Exp [jk(mx,+iT)]

- yd)= —
glmx, d) 2m, mxo+iT,
19)
KT,i]
=Expljkmx] > E—XM
i mxetTd

Since kT, =2nT, A, whenever the value of T,/ A
is an integer the exponent is unity for all i and
the diverges. However, this divergence happens
only when d=0.

The large bias error discussed in Williams and
Maynard’s paper' arises, not because of the replica-
ted source problem, but because of the coincidence
of a sampling position with the singularity of G(fx,fy,
d) in the Fourier domain. As we see from Eq.(6),

the singularity happens when,

K=K +k= (pkm)z + (Qky(i)z, 20
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which defines a circle centered at the origin with
radius of k in the Fourier domain. Since the samp-
ling spacings kx,, ky, in Fourier adomain are rela-
ted to aperture size as ky,=2n/Ty, ky,=2n/T,,
Eq.(20) can be written as,

@n/N? = (p 2n/TY? + (q 2n/TP* (2D

Thus, whenever T,/ A and Ty/ A become integers,
the equality of Eq.(21) is satisfied and the singula-
rity happens. Thus the inverse DFT will fail under
these conditions. Note that this situation can arise
at any value of d. Fig.2 shows the relation between
the value of k and the position of singularities. The
reason why the bias errors are dominant for small
integers is explained graphically in Fig2 Let us
say here k,,=0 for simplicity. Fig.3—a shows the
case of T,<A In this case, the singularity occurs
between p = 0 and p = 1 in the Fourier domain,
that is,

k=2n/2<2n/T,= Ky (22)

Because the singularity happens in between the
sampling points, and the Green's function decays

81
T, b, K—
6n
5 -

T
‘X

& i B
Ty Ty Ty

bn
Te

Fig. 2 Lattice points of Green's function singularity
position (marked as x) in 2 dimensional Fou-
rier space with radiation circle, Only first qua-

drant is shown.

fast after the singularity (as d increases by one
wavelength, the amplitude decays about 3.5 X 10
6)%, the resulting function sampled at discrete inte-
ger points shows a quite different shape from the
original function. Because we sample the data only
at integer points, in case of the condition given
in Eq.(22), the sampled sequence gives some value
at origin and very small values at the other points.
This looks like a impulse function, thus the inverse
DFT of the sequence results in an almost a constant
value as seen in Fig.(3) of Williams and Maynard'd
paper. When T,=A, then a singularity arises at p~
1, which is the point of k=ky, shown in Fig.3-b,
and the DET will fail because there is a infinite

value at p= 1. This phenomenon happens continua-
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o 1 2 3 N-1
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0 1 2 3 N-1
@ l_**k
A P
T T T T T >
0 1 2 3 p-l P p+l N-1

Fig. 3 The relationship between the sampling powis
and the position of singularity when (a) 0<
T<h, (b)) Ty=A, () MT2\ and (d) T,

is much larger than A.
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lly whenver the condition of Eq.(21) is met, ie.
whenever both T,/ A and Ty/ A are integers. Fig.3-
c is for the case when A<T.<2A, and also shows
quite different sampled data than the original func-
tion. When the value of T,/ A is getting close to
an integer (equivalently, k value is close to a samp-
ling poing), the sampled value near the singularity
becomes larger. As a result a large bias errors oc-
curs. As A becomes smaller, in other words as the
value of k is getting larger, the spacing of adjacent
singularities become closer, see in Figl, and the
bias errors are lessened, as shown graphically in
Fig.3-d.

3. Conclusion

The conditions of large bias error are the same
as those reported earlier by Williams and May-
nard’s. We showed that the coincidence of singula-
rities of G(pky,, gkyo, d) and the sampling points
causes large bias errors. Also, the divergence of
the sum in Eq.(19) is neither related to the location
of singularities nor the distance, d. As shown in
Eq.(17), there is no replicated source problem in
evaluating Rayleigh’s integral numerically by the
reason of the periodic assumption of input sequence
in DFT? or by the periodic sampling of the function
in the Fourier domain'. Because the source func-
tions are not wrapped over each other after forward
and inverse FFT, the wrap around error is not due
to an overlap of the individual sources but because
of the undersampling of the Green's function in
the frequency domain. Actually, the replicated and
overlapped one is inverse Fourier transformed
Green's function rather than the source function.
As a matter of fact, as the distanced, increases,
the frequency content (frequency of the oscillation
in frequency domain) of pass band in Eq.(6) is
also increased. Thus, the more the distance increa-

ses, the more we undersample the Green’s function

in frequency domain and have wrap around error
in spatial domain. By this reason, there exists a
maximum propagation distance for field reconstru-
cation. Note ‘that the pass band-width in Eq.(6)
is not a function of d but a function of k. We will
discuss about this subject elsewhere. The sampling
rate in frequency domain is proportional to the win-
dow width in space. Thus, the incresase of sampling
rate is frequency domain is a more accurate interp-
retation for the “zero padding” required to reduce
errors in spatial domain than that of moving repli-
cated surces away from each other'’,

Other factors to be considered are circular con-
volution and windowing effect in both spatial and
Fourier domain. This will be discussed in a future
publication.
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