THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

  • 발행 : 1989.08.01

초록

In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Geverey class for any data which are holomorphic in a part of variables x"=(x$_{2}$,..,x$_{l}$ ) in the initial hyperplane x$_{1}$=0. A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties S:x"=constant if the equation P$_{m}$(x, .zeta.$_{1}$, .xi.')=0 for .zeta.$_{1}$ has only real roots when .xi.'is real and .xi."=0, where P$_{m}$ is the principal symbol of pp. Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when S is a hyperplane [3]. In this paper, we generalize this condition to the case of general linear subvariety S and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.blem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.

키워드