SOME PROPERTIES OF $D^n$-GROUPS

  • Published : 1989.02.01

Abstract

In 1980 and 1983, it was proved that P $D^{2}$-groups are surface groups ([2], [3]). Since then, topologists have been positively studying about P $D^{n}$ -groups (or $D^{n}$ -groups). For example, let a topological space X have a right .pi.-action, where .pi. is a multiplicative group. If each x.memX has an open neighborhood U such that for each u.mem..pi., u.neq.1, U.cap. $U_{u}$ =.phi., this right .pi.-action is said to be proper. In this case, if X/.pi. is compact then (1) .pi.$_{1}$(X/.pi).iden..pi.(X:connected, .pi.$_{1}$: fundamental group) ([4]), (2) if X is a differentiable orientable manifold with demension n and .rho.X (the boundary of X)=.phi. then $H^{k}$ (X;Z).iden. $H_{n-k}$(X;Z), ([6]), where Z is the set of all integers.s.

Keywords