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How to Analyze an Unreliable Two-Machine,
Two-Stage Transfer Line with Interstage Buffer”

Yushin Hong*

Abstract

This paper discusses an analytical method to derive the efficiency and the average storage
level of an unreliable two—machine, two-stage automatic transfer line with interstage buffer
storage. Extensive numerical experiments and simulations are also conducted to see the
behavior of the system under the wide range of parameter valuesas well as various distribu-
tions.

1. Introduction

In recent years. as cornputer technology has been developing very rapidly, the automation
of maufacturing systems is one of the most active research topics in many industries. Many
benefits can be derived from the automation of manufacturing systems. However, the auto-
mated systems have disadvantageous aspects, too. The most important one is to require large
investments for the instaflation of new systems or for upgrading the existing manual or
semi-automated systems. Another disadvantage is that there is a strong interdependency
between the stages of a system. Since the failure of one stage causes the failure of whole
system, the system efficiency can be low in spite of large investments. Therefore, economic
analysis should be carried out for automation before implementation.

At the same time. we have to explore the possible way to improve the efficiency o
automated manufacturing system. One way to compensate for the failure of one stage is t
provide an alternate machine which will be brought into use when the main machine fail
especially, at bottleneck stage. That is, control is switched over to the backup or idle machir
as soon as the other machine, which is running, fails. Another possible way to imporve t!
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efficiency is to reduce the interdependency between the stages by providing buifer storages
between the stages.

Many researches have been conducted for the analysis of manufacturing systems with
inter-stage buffer. Buzacott[1], Okamura and Yamashina[9], Ignall and Silver[6), Gershwin
and Schick [4] derived analytical solutions by modelling the system as a discrete time Markov
process. But discrete time approach has a restriction that it cannot be applied to the analysis
of the systems with different production rates, which is common in real world. Considering
above restriction, we take a continuous time Markov process for the apalysis of the system.
Malathronas et. al. [8] and Wijngaard [10] derived an analytical solution with this continuous
time approach.

Meantime, few researches has been done on how the alternate machine can improve the
efficiency of the system. Fox and Zerbe[2] discussed the case where a stage consists of two
identical machines, alternatingly acting as spares for each other.

In this paper, the analytical method is developed to derive the efficiency and the average
storage level of an unreliable two—stage automatic transfer line, which consists of main and
alternate machines in each stage and the interstage buffer storage.

2. Description of the Problem

Consider two-stage automatic transfer line shown in Fig.1. This system has two stages in
series separated by inter-stage buffer storage with finite capacity.

Each stage consists of two machines{main and alternate machines). Each machine has own
unique production rate and is subject to failure. It is assumed that uptime and downtime of
each machine are exponentially distributed with known parameters. Also, main and alternate
machines in each stage are assumed to have equal production rates.

Raw units come from outside the system and are processed at the first stage, then move to
buffer, and pass the second stage following the completion of process. There is an infinite
supply of raw units as well as an infinite demand for completed units.

In each stage, the main machine operates unitl it fails. If it fails, the alternate machine is
brought to operate if it is up. If the alternate fails again, the main machine takes over if it is
repaired already. This aiternating process is repeated continuously. It is also assumed that
there are enough repair facilities. Fox and Zerbe[2] assumed that only one repair facility is
available. In this system, if the second stages goes down while the first stage is processing
units, the storage level increases. Eventually, buffer becomes full, and the first stage cannot
process the units any further because no space is available for processed units. We cail
this “blocking”. Similarly, the second stage will be starved when no units are available in
buffer due to failure of the first stage., We call this “starvation”. We assume that the
idle(blocked or starved) machine never fails. Also, when buffer is empty, production at the
second stage can be partially restricted by the first stage in case production rate of the second
stage is larger than that of the first stage. Similarly, production at the first stage may be
partially restricted when the first stage can run faster than the second stage. Obviously.
increasing buffer capacity results better efficiency at the cost of capital investment for buffer.
Therefore, we should always take into account trade—off between the system efficiency and
buffer capacity.

—-116-



PR P, (A3 #5, P2

(A5, 75, #9) (A% #, P2
Fig. 1. Two-Stage Automatic Transfer Line

In Fig.1, define system parameters as follow:

A :Failure rate of main machine in stage i, i=1,2
AxFailure rate of alternate machine in stage i, i=1,2
#:Repair rate of main machine in stage i, i=1.2
Ff:Repair rate of alternate machine in stage i, i=1,2
# :Production rate of stage i, i=1,2

K:Buffer capacity

In section 3, it is shown that how a stage with main and alternate machines can be
approximated by a stage with one machine. Section 4 discusses the analytical method to study
the behavior of an unreliable two-stage system. Section 5 shows the results of numerical
analysis and simuolation results is presented in section 6.

3. Representation of Two-Machine-Stage as One-Machine-Stage

In this section, we discuss how to represent a stage of main and alternate machines as a
stage of one machine. The behavior of the stage of two machines is modelled as an
alternating renewal process. The instant when both machines fail is considered as a starting
point of an offperiod, and when one machine is repaired, an on-period begins and remains
wntil both machines fail again. Each time the process goes off, everything starts over again.
That is the process starts over again after a complete cycle consisting of an on and an off
interval. In other words, a renewal occurs whenever a cycle is completed. This alternating
renewal process is depicted in Fig.2

Alternating Renewal Cycle

Main -

Alternate

Fig. 2. Alternating Renewal Process
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Define

Xi:Running time of machine } of stage i, i=1,2

Y/:Repair time of machine j of stage i, j=1.2

Zi:Idle time of machine j of stage i, =12
where

. [1 Main machine
3 2 Alternate Machine

In Fig.2, the stage i starts a new running period when either main or alternate machine gets
repaired. Therefore, the repair time of the stage i is a minimum of the repair times of main
machine and alternate machine. Since the repair time of both machines are exponentially
distributed with parameter (#; + #) as Eq.(1).

(1) Y =Min(Y', Y)~ Exp(#+ #))

If the failed machine is repaired before the running machine fails, the stage i can continue
to run. When the main machine gets repaired first, running time of stage i, Ty, is expressed
as:

T=X+ X+ X+ X+ X+ X+ +Xa

In equation above,(Xi, X, Xeeere Jare independent random variables with commom ex-
ponential distribution with parmeter 4!, and (X:, X, Xi -+ )are also independent random
variables with common exponential distribution with parameter 4; . The running time, T will
be increased by X* with probability P when the main machine fails. Likewise, T) will also be
increased by X' with probability P when the alternate one fails. This alternating process
continues until the current working machine fails before the standby one gets repaired. Pe
and P are defined as follow:

L

Pz,=P(x2>Y=)=%

J7
PIL=P(X1>Y2)=”— +#.1

The expected running time of stage i, E(Ty), is:

(At 2) A+ #)EX)+ #EX)
ATA A+ A0

E(T)=

If the alternate machine gets repaired first, the expected running time of stage i can be
expressed similarty:

(At #) #EXD)+ (A #)EX)]
AAH A+ AT

E(Tz):
Consequently, the expected runmng time of stage i, E(X)), is:
E(G)=E(T)P(Y' <Y)+E(T)P(Y' >Y?)

where
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PY' <Y )=, BV DY) =

Therefore,

(2 /AR + DAL+ 2+ 2D /A NAT H HDA I+ #])
(L4 DA Ar+ A1)

2)  EX)=-

As a special case, when both machines have the same parameters, the running time of stage
i can be writien in terms of main machine as follow:

X=X+ X+ XX A eeremreees X,

We see that X, X;,' ------ , Xy are independent random variables with common exponential
distribution, and N is geometrically distributed with parameter P, which is equal to Pa.
Therefore, we will call that Xi has the compound geometric distribution with the mean,
E(X) as given in Eq.(3).

A+
(2

As in Eq. (1), the repair time of stage i has an exponential distribution with parameter, ( #;
+ #7), while the distribution of the running time of stage i has a mean, E(X), as given in Eq.
(2). However, simulation shows that, as long as the mean of the running time remains the
same, it’s distribution is not significant to the efficieney of the stage. Therefore, the running
time of stage i can be approximated to have an exponential distribution with mean, E(X).

() EX)=

4. Two-Stage Automatic Transfer System

In section 3, it is shown how to represent a stage with two machines can be approximated
as a stage with one machine. This section discusses an analytical method to evaluate the
efficiency and the average storage level of a two-stage system, which is shown in Fig. 3,
where each stage is consisting of a machine having exponentially distributed uptimes and
downtimes.

~O—V—0-

(A, 2. P1) K (As, H, P2)

Fig. 3. Two-Stage Automatic Transfer Line with One Machine in Each Stage
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Define the failure rates and repair rates of machines:

AFailure rate of a machine in stage i, i=1.2
#;Repair rate of a machine in stage i, i=1.2

The variables denoting the storage level and the state of the system are defined as follow:

xi:Storage level of buffer
ma:State of stage i

_ [ U if stage iis up
D if stage i is down

With the definitions as above, the state of the system can be expressed by three component
vector, such as (U,U,x), which means that the first stage and the second stage are processing
units while storage level is equal to x. Also, the blocking state of the first stage is expressed
as (U.D.K). Similarly, the starvation state of the second stage can be expressed as (D,U,0).

This two-stage system produces its output at the rate of £: as long as the second stage is
working and the buffer is not empty. But if the second stage is faster than the first stage in
processing units, when buffer is empty, the production at the second stage is restricted by the
first stage.

For our computational convenience, the time scale is changed through the introduction of
the relative production rate, 2, and the relative storage capacity, K as shown below.

s K

P=% X

Suppose that the system is in state (D,U,0) at time 0, then there exist time points when the
system returns to state (D,U.0). at which the process probabilistically restarts itself. That is,
with probability 1, there exists a time such that the continuation of the process beyond that
time is a probabifistic replica of the whole process starting at time 0. Therefore, we can model
this two-stage system as a regenerative process in which the regeneration point is defined as
the beginning of the state of the system (D,U,0), and the time between the two regeneration
points is called a regeneration cycle.

The quantities of interest including the expected cycle length, the expected system efficien-
cy per cycle, the average storage level per cycle and the expected time of various states of the
system, can be determined by defining appropriate cost functions, and then calculating the
expected cost per cycle. In general, the cost functions depend on the state of the system.
which are defined by

a(x): the cost/unit time in state (D,D.x), 0<x<K
c:(x): the cost/unit time in state (D,U.x}, 0<x<K
cs(x): the cost/unit time in state (U.Dx), 0<x<K
ci(x): the cost/unit time in state {(U,U,x), 0<x<K

In order to calculate the expected cost per cycle, the following four functions are intro-
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duced to represent the expected cost until the end of the cycle depending upon the present
state of the system.

f{x): the expected cost untit the end of the cycle if the system is now in
state (D,D,x), 0<x<K

fx(x): the expected cost until the end of the cycle if the system is now in
state (D,Ux), 0<x<K

fi{x}): the expected cost until the end of the cycle if the system is now in
state (U,Dx), 0<x<K

f{x): the expected cost until the end of the cycle if the system is now in
state (U, U x), 0<x<K

Then, the expected cost per cycle(EC) is follow:

_e© (0)

(4) EC +£(0)

In Eg.(4), first term is the expected cost umtil the state (D,U,0) is changed to the
state (U,U,0), and second term represents the expected cost from the beginning of the
state (U, U,0) until the end of the cycle.

In order to find £(0) in Eq. (4}, we set up differential equations of stationary probabilities
which shows how the function f\, f-, £, f: can be determined. The cost £i(x) can be divided into
the costs during the first small time interval & and the rest of the costs until the end of the
cvele.

fi(x)=cx) & +(1-#.8)1-# a)fl(x)+;z 3(1 Ho 8 )¥a(x)+ (1~ 21 8 ) #28 fo(x)
By taking the limit as & goes to zero,
0=ci(x)—{ &+ HI(x)+ 2 B(x)+ H#:6:(x), 0<x<K
Similarly, we can derive
P B)=cAx)~( A+ 2B+ Afi(x)+ £ fi(x), 0<x<K
) =c(x) A1+ £+ A fi(x)+ Zddx), 0<x<K
(P -DE(x)=c(x)—{ A 1+ Af(x)+ Afi(x)+ A :f(x), 0<x<K

From above four equations, a system of three differential equations can be derived as
shown in Eq.(5).

; (x) f2(x)
(3) [f; (x) ] =A [f;(x) ] +B(x)
£ (x) f(x)’

where
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—1 ).:.ul_ A, i _l_ A:C](X)
ir' b PP TR et s # 7 Ty e POl
o — A K A _ N _ _RlCl(X)
A= ! Mot M et Mot e £ Bx)= ! Fl+ﬂ:+C3(X)E
\ A A At _ci(x)
f—1 A —1 g —1 £ -1
The boundary conditions are derived as fotlows:
For x=K, 0=c(K)— #:#:(K)—£(K)!
If #<1 and when x =K B B B
O=cdK)—(A:+AH(K)+ A f(K)+ A £H(K)
If 221 and when x =0
0=c(0)—( A1+ AIE0)+ A £0)+ 2 £(0)
For x =0, 0=£:(0)
In Eq.(5). 1=t 222 atrix A has three distinet eigenval d f th
n Eq.(3). TR g g matrix as three distinct eigenvalues, and one of these

£ P
PER S TR R

is always 0. If - . A has two different eigenvalues, and 0 is aiways the

eigenvalue of algebraic multiplicity of two. Wijngaard [10] stated that the nonzero eigenvaluc
has index two, which 1s not true.

In order to find the expected cost per cycle, solution procedure can be summarized as

follows:
Step 1:Specify the value of Ci(x) as given below depending on the quantity of intercst

Expected Cycle Length, o{x)=cx)=c(x)=c(x}=0 0<x<K

System Efficiency, e{x)=cx(x)=0, c(x)=c(x)= £ 0<x<K
c{0)=c:(0)=cs(0)= &, cs(0)=min(1,P)

Average Storage Level, a(x)=c(x)=c(x)=cd{x)=x, 0<x<K

Step 2:Solve the system of lincar differential equations, Eq.(5) to find £.(0)
Step 3:Calculate the expected cost per cycle.

Through the procedure explained above, we can find the necessary values for the analysis of
two-stage transfer system. Note that only numerical solutions are available. However, in case
of £=1 (£:=~F,), closed forms of solutions can be derived.

4, Numerical Sofutions

In desigaing a manufacturing system, the choice of the machines at each stage is likely to
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be determined by the technology of the process and the product to be manufactured.
However, the amount of buffer capacity to be allocated is influenced by the trade—off
between the cost of providing the buffer space(and perhaps by the cost of holding storage)
and the gain of the system efficiency. We are primarily interested in how the system efficiency
and the average storage level depend on the buffer capacity.

Before we discuss the numerical experiment results, the properties of symmetry and
reversibility is discussed. It is simple to prove these properties for our model by analysis of
sample paths. The reversibility principle is: if the direction of flow in a manufacturing line is
reversed, the system efficiency remains same, but the average storage levels are com-
plementary, i.e. in each buffer, the new average storage level is the buffer capacity less the
old average level. As a consequence of this fact, in a symmetric N-stage system, we know
that the average storage levels of ith and(N-i)th buffer are complementary to each other. In a
system composed of two identical stages, the average storage level is half the buffer capacity.
In an unbalanced line, if the second stage is the bottleneck, storage tends to pile up in front
of it. Hence we see that the average storage level is a convex function of buffer capacity. In
the reversed system, with the first stage bottleneck, we of course observe that the average
storage level is concave in buffer capacity.

In experiments 1 and 2, we explore how the parameters of the stage influence the system
efficiency. In both experiments, we assume that the first stage is the bottleneck and has fixed
parameters, Clearly, any change in the parameters of the second stage that improve it’s

] . it . . .
effective production rate, = (incerase the production rate or repair rate or reduce
failure rate) will increase the system efficiency. In these experiments, we look at various
parameter sets for the second stage that keep its effective production rate fixed, i.c.we keep I:

constant.
. . - s Hi
In experiment 1, we vary the failure and repair rates while keeping reliability (W) of

the second stage constant. We see that icreasing the repair rate (which reduces mean
downtime) will increase the system efficiency at any positive buffer capacity, even though the
failure rate is increased proportionally. This is because with the reduced mean downtime,
there is less chance to fill the buffer, thus blocking the bottleneck stage. Therefore, we see
that the efficiency is more semsitive to the repair rate than the failure rate. However, the
average storage level is essentially independent of the repair rate under these experimental
conditions.

* In experiment 2, we examine three values of the production rate(£:). For each of the
production rates, we consider two ways of adjusting the reliability of the second stage to keep
the effective production rate constant, i.c. change the failure rate(cases 2, and 3) and the
repair rate(cases 4, and 5). We note that, with the same effective production rates and failure
or repair rates, a more reliable but slower machine gives more system efficiency. When £,>
2., as in cases 3 and 5, the production tate of the second stage is never restricted even
though the buffer is empty, as long as the first stage works. Furthermore, since the reliability
of the sccond stage is comparatively high, the blocking chance of the first stage(bottleneck
stage) is pretty small, and the system efficiency reaches to the possible maximum value{effec-
tive production rate of the bottleneck stage)at relatively small buffer capacity. Given
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machines of the same reliability, as in expertment 1, the machine with the larger repair rate is
better(compare case 2 with 4,3 with 5).

Experiment 3 is a sensitivity analysis, in which failure rates and production rates of both
stages are improved by 10 percent respectively, based on the parameters in case 1. Note that
the system efficiency is more sensitive to the effective production rate of the bottleneck stage,
which is obvious in the limiting case of infinite buffer capacity. At smaller buffer capacity,
increasing the production rate of the bottleneck stage is not as productive as increasing its
reliability. This is because the small buffer is often full, limiting the production rate of the
first stage, which is the bottleneck stage, to the instantaneous production rate of the second
stage. But at larger capacity, blocking of the first stage is rare and the system efficiency
approaches to the effective production rate of the first stage. Since this is directly proportional
to the production rate of the first stage, case 3 gives the largest system efficiency. The system
efficiency curves of cases 1,4, and 5 have the same asymptotes. That means improving the
effective production rate of the second{non-bottleneck) stage improves the system efficiency a
little at large buffer capacity. At smaller buffer capacity, the system efficiency is more
sensitive to the production rate of the second stage than to its reliability because the effective
production rate of the second stage is directly proportional to it’s production rate.

6. Simulation

In this section, simulation experiments are carried out to see how the system behaves when
the rapair times are not exponentially distributed. Throughtout the simulation experiments,
the Antithetic Variates technique and Common Random Numbers[7] are used to reduce the
variances of the simulation results.

Five types of repair distributions are tested to evaluate the effect of repair time distribution
on the behavior of the system; Exponential(case 1), 2-Erlang(case 2}, Uniform{case 3},
4-Frlang{case 4), and Deterministic{case 5), while case 0 shows the analytical solation from
section 4. Sequences of Exponential failure times are exactly identical in all five cases. As for
the repair times, Exponential and Uniform repair times are generated from the same streams
of Uniform (0,1) random numbers, while 2-Erlang and 4-Erlang repair times arc generated
from different streams of Uniform(0,1) random numbers. Even though only partial synchro-
nization is maintained, Common Random Numbers gives us a considerable gain in precision.
Mean repair times of all five distributions are same, while variances are different; variances of
Deterministic repair times are zero, variances of Uniform and 4-Erlang repair times are one
fourth, and variances of 2-Erlang repair times are one half of variances of Exponential repair
times Tespectively.

For each set of parameters, five pairs of simulation runs, in which each run is performed
for 30,000 time units, are carried out to have enough observations for statistical analysis of
simulation resulis.

Throughout the experiments, parameters of the first stage are never changed and the first
stage is always remained as the bottleneck stage. Based on the parameters in Simulation 1,
the repair rate of the second stage is varied in Simulation 2, while five percent faster
production rate is chosen in Simulation 3. In Simwation 4 through 6, same parameters are
chosen as used in on Simulation 1 through 3 respectively, except that the buffer capacity is
increased from 5 to 50. to investigate the effect of the buffer capacity to the behavior of the
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system under the different repair time distributions.

When buffer capacity is small (K=>5)} compared with the expected production loss during the
repair time, the differences between the system efficiencies of five repair time distributions
are statistically insignificant(refer Tabie 4 through Table 6). This is because the storage level
hits boundary and the non-—failed stage turns into the idle state most of the time when one
stage fails. Therefore, we conclude that the behavior of the system is affected very little by
the variances or the distributions of the repair times, when buffer capacity is comparatively
small.

On the contrary, when buffer capacity is large (K=350) campared with the expected
production loss during the repair times, we see the significant statistical differences in the
system efficiencies of cases 1,2,3, and 5, while the efficiencies of case 3 and 4 are statistically
insignificant(refer Table 7 through Table 9). From above, we say that the system efficiency is
significantly affected by the variances of the repair times rather than the distributions, The
reason is; when the variances of the repair times are small, there are very littie chances that
the non—failed stage goes into the idle stage. But as the variances get larger,  not only the
probability that the non—failed stage turns into the idle state gets larger, but the idle time gets
longer. Therefore, it is our conclusion that the system efficiency deteriorates as the variances
of the repair times get larger. However, there is no indication of any statistical differences in
the average storage levels. This indicates that the average storage level is not so sensitive to
the variances of the repair times as the system efficiency is, as long as buffer capacity is large
enough.

Finally, when buffer capacity is extremely larger compared with the expected production
loss during the repair times, the probability that the non—failed stage turns into the idle state
when one stage fails are very small. Accordingly, we know that the behavior of the system is
less dependent on the variances of the repair times, because both stage are more decoupled
each other.
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Table 1. Parameters for Experiment 1

Case Al £y £ It Az Mo 2. I: rzh']
1 0.01 0.09 1.0 0.9 0.012 0.12 1.0 0.9091 1.01
2 0.1 0.09 1.0 0.9 0.008 0.08 1.0 0.9091 1.01

Table 2. Parameters for Experiment 2

Case A Hy 2,y n Az H Fa I: rz/It
1 0.01 0.09 1.0 0.9 0.004 | 0.096 1.0 0.96 | 1.0667
2 0.01 0.09 1.0 0.9 0.012 | 0.096 1.08 0.96 | 1.0667
3 0.01 0.09 1.0 0.9 0.002 | 0.09 0.98 0.96 1.0667
4 0.01 (.09 1.0 0.9 0.004 | 0.032 1.08 0.96 [ 1.0667
5 0.01 0.09 1.0 0.9 0.004 | 0.192 0.98 0.96 | 1.0667

Tabte 3. Parameters for Experiment 3

Case A &y o, n A Hy o I: n/n
1 0.02 0.08 1.0 0.8 (.01 0.09 1.0 0.9 1.125
2 0.018 | 0.08 1.0 0.8163 ! 0.01 0.09 1.0 0.9 1.1025
3 .02 0.08 1.1 0.88 (.01 0.09 1.0 0.9 1.1045
4 0.02 .08 1.0 0.8 0.009 | 0.09 1.0 (0.9091 | 1.1364
5 0.02 0.08 1.0 0.8 0.01 0.09 1.1 .99 1.2375
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Fig.4. Experiment 1
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System Efficiency
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Tabie 4. Result for Simulation t

Parameters:(0.01,0.09,1) (0.01,0.09,1} K =5

System Efficiency

Average Storage Level

Case Mean 4 M—2c | M+20 Mean g M-2c¢ | M+2¢
0 0.8383 - - - 2.5000 - - -
1 0.8337 0.0027 0.8284 0.8391 2.5297 0.1128 2.3041 2.7552
2 0.8358 0.0029 0.8299 0.8416 2.5092 0.0931 2.3229 2.6955
3 0.8348 0.0017 8.8314 0.8382 2.4999 0.0915 2.3169 2.6829
4 0.8368 0.0028 0.8313 0.8424 25144 0.1086 2.2973 2.7315
5 0.8365 0.0019 0.8327 0.8403 2.5089 0.1180 2.2730 2.7448
Table 5. Result for Simulation 2
Parameters:(0.01,0.09,1},(0.01,0.10,1),K =5
System Efficiency Average Storage Level
Case Mean g M—20 | M+2¢e Mean a M—2c | M+2¢
0 0.8409 - - - 2.4514 - - -
1 (0.8412 0.0027 0.8359 0.8465 2.4794 0.1098 2.2598 2.6991
2 0.8433 0.0031 0.8372 0.8495 2.4630 0.0936 2.2759 2.651
3 (.8425 0.0017 0.8391 0.8459 2.4547 0.0929 2.2689 2.6404
4 0.8448 0.0028 {.8389 0.8502 2.4740 0.1107 2.2526 2.6955
5 0.8442 (.0020 (.8403 0.8431 2.4745 0.1169 2.2407 2.7083
Tabte 6. Result for Simulation 3
Parameters:(0.01,0.09,1),(0.01,0.09,1.05), K=3
System Efficiency Averape Storage level
Case Mean g M—20 | Mt2o Mean o M—2c | M+2¢
] 0.8420 - - - 1.3850 - - -
1 0.8414 (0.0038 0.8339 (.8490 1.4103 0.0380 1.3342 1.4863
2 0.8440 0.0024 0.8392 0.8488 1.5085 0.0576 1.3933 1.6237
3 0.8435 0.0022 0.8391 0.8478 1.5280 0.0551 1.4177 1.6382
4 0.8448 0.0023 0.8402 (.8495 1.5591 0.0589 1.4413 1.6768
5 0.8451 0.0023 0.8405 0.8498 1.5651 0.0513 1.4626 1.6677
Table 7. Result for Simulation 4
Parameters:(0.01,0.09,1),(0.01,0.09,1},K=50
System Efficiency Average Storage Level
Case Mean g M—2c | M+20 Mean a M—2c | Mt2¢
0 0.8750 - - - 25.000 - - -
1 (0.8751 0.0022 0.8707 0.87%6 24.912 0.9801 22.952 26.872
2 0.8805 0.0021 0.8762 ().8848 25.001 1.5489 21.904 28.099
3 0.8820 0.0015 0.8790 0.8849 25.523 1.1516 23.219 27.826
4 (0.8834 0.0023 0.8789 0.8880 25.711 1.0693 23.572 27.849
5 0.8851 0.0008 0.8834 .8868 25.952 1.1741 23.605 28.300
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Table 8. Result for Simulation 5

Parameters:(0.01,0.09,1),(0.01.0.10,1), K =50 ]
System Efficiency Average Storage Level 5
Case Mean g M—2g | M4+29o Mean g M—-2c¢ | M+20o
0 0.8810 - - - 23.108 - - -
1 0.8815 0.0020 0.8775 ().8855 22.964 1.0031 20.958 24971
2 0.8861 0.0027 0.8807 0.8914 22.504 1.8860 18.733 26.276
3 0.8876 0.0013 0.8850 {.8903 22,782 1.1996 20.383 25.181
4 0.8890 0.0024 0.8842 0.8938 22.913 1.1285 20.662 25.177
5 0.8904 0.0011 (.8883 0.8925 22.435 1.3246 19.786 _5.085
Tabte 9. Result for Simulation 6
Parameters:({.01,0.09,1),(0.01,0.09,1.05) K=50
System Efficiency Average Storage Level
Case Mean g M—2¢ | M+2¢o Mean a M—20 | M+2e ;
] 0.8886 - - - 15.764 - - -
i 0.8889 (.0045 (.8800 (.8978 15.964 0.7240 14.514 17.412
2 0.8929 0.0045 0.8900 0.8959 15.086 1.2587 12,569 17604
3 (1.8951 0.0013 0.8925 0.8977 14.352 0.8209 12.711 13,994
4 (G.8947 0.0017 0.8913 0.8981 14.145 0.9571 12.231 16.059
5 (0.8968 0.0007 (1.8955 0.8982 13.152 0.9188 11.315 14.990
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