(R Joumal of the Korean Institute
of Industrial Engineers
Vol 14, No. 2, Dec. 1988

Optimal Allocation of Test tems in an Accelerated Life Test
under Model Uncertainty

Young Sik Choi*
Bong Jin Yum**

Abstract

In accelerated life testing, a relationship is usually assumed between the stress and a
parameter of the lifetime distribution. However, the true relationship is not usually known,
and therefore, the experimenter may wish to provide protections against the likely departures
from the assumed relationship. This paper considers an accelerated life test in which two
stress levels are involved, and the lifetime of each test item at a stress level is assumed to
have an independent, identical, exponential distribution. For the case where a first order re-
latioship is assumed while the true one is quadratic, a procedure is developed for allocating
test items to stress levels such that the bias andor the variance of the estimated(log-
transformed) mean lifetime at the use condition & minimized.

1. INTRODUCTION

An accelerated life test{ALT) is frequently used in industry to quickly obtain information
on the lifetime distribution of highly reliable components, equipment, etc. Acceleration in
testing time is achieved by subjecting test items to stress conditions that are severer than the
normal use condition. The results obtained at the accelerated conditions are then extrapolated
to the use condition according to an assumed relationship between the stress and a parameter
of the lifetime distribution.

Im most previous works on the optimal design of an ALT, the assumed relationship
between the stress and a parameter of the lifetime distribution is regarded as a trus one(e.g.,
see[2], [4] — [8], etc.). However, the true relationship is not usually known in practice, and
therefore, the experimenter had better provide some protection against the likely departures
from the assumed model.
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In this paper, the lifetime of cach test item at a stress level is assumed to have an
independent, identical. exponential distribution. It is further assumed that the experimenter
assumes a first order relationship between the stress and the mean lifetime while the true one
is quadratic. Developed in this paper is a procedure for allocating test items to stress levels
such that the bias and ./ or the variance of the estimated(log-transformed) mean lifetime at the
use condition is minimized. The weighted least squares method is used for the complete(i.e.,
uncensored) data.

1.1. Notation

X siress level

Xo, X1, X: the use, low, and high stress levels, respectively

a(x) mean lifetime at stress level x

Ba, By, B: unknown coefficients in the true relationship between the stress and the
mean lifetime

3a. B unknown coefficients in the assumed relationship between the stress and
the mean lifetime

b., b’ weighted least squares estimalors of By and B[, respectively

N total number of test items given

o, M numbers of test items allocated to the low and high stress levels, respec-
tively :

1, time 1o failure of the j-th test item at the i-th stress level, i=1, 2. j=1,
2, e I

t 5:]" t,, i=1. 2

T(), ¥{+) digamma and trigamma functions, respectively

fo estimated(log-transformed} mean lifetime at %

Be bias of fo

V. variance of ¥

MSE( -) mean square error

2. THE MODEL AND ASSUMPTIONS

This paper considers a case where the lifetime of test item at a stress level is exponentially
distributed with mean 8. Suppose that the experimenter assumes

e(x)=exp(ﬁ;+ B:X), ............................................................................................ ([)

and in planning an ALT he wishes to provide protections against the likely departures
from(1). especially against the following.

B(X) T eXP(Bat Brx ok BaK?). 1o vessesmresssomees s (2)

The following additional assumptions are made.
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. The total number of test items are given.

The use condition is known,

. An ALT is conducted at two distinct stress levels specified.

. All test items are run to failure. :

. The lifetimes of test items at a stress level have independent, identical exponential
distributions.

Let n(i=1, 2) be the number of test items allocated to x(i=1, 2) such that n.+n=N, and
ti(i=1, 2; j=1, 2,..., n) be an observed life. Define

= ;titij, i:l, 2 ................................................................................................. (3)

It is well known that t./8(x) has an one-parameter gamma distribution{e.g., see [3]). Consid-
er the following transformation.

yf:ln t\, i=1’ 2................u........... ..................................................................... (4)
Then, y/ can be written as
y(:ln e(x) +e; --....--......-....................-.-........-.---........-.-.........---T .................... (5)

where e has an independent log-gamma distribution with mean ¥(n) and variance
¥ (n)(e.g., see [3]). Define a new variable y: such that '

Y=y —¥(m)
=In #(x)+ lei— ¥(n}! ‘
Then,

E(e-.) =0
Var(e)=¥"(n)

Under the assumed model the weighted least squares estimators of 8; and 8 are respective-
ly determined as by and b such that the following is minimized.

S (p—bimbX)/ ¥ (n)
It can be shown that
B (Y3 ¥2)/ (Rim K)o o e e e (7
B (0 — Xey1),/ (KymmKe) we v e eese s s es e bt b (8)
Then, the log-transformed mean lifetime at the condition is predicted as

_.93_



To evaluate the bias and the variance of §u, we first consider those of b, and b;. For instance

E(b‘,)':E i()h—y:)/()(:—)(z)}
= | (Bo+ B+ B} — (B + Bixe 4+ Bl / (xi—x2)

=B1+Bz(xl+ x:) .......................................................................... R T ( IU)

Var(b}}=Var {{yi—y2}.,” (x —x:)|

= #‘1"(111}+'*If’(m)} /(X1—Xz)3 ...................................................................... {11)
Similarly,
E(D0) =B By Kula reveremmemrm s ra st st r s s (12)

Var(b.,'j= fq;'(m)xf.}.\y'(m)x;} /(x;-—x:)3 ..(13)

COV(b.:, bD= — {W’(n;)xﬁ‘l”(m)x:)} /(Xx—X:)z"'(l‘*)
The bias and the variance of v are then detemined as follows.

B=E({:)— 8{Xo)

=E(by+b, %) — (Bu‘f‘len'l'B"xo)

= —Bu(Xe— Xs)(Xo—Xe) eevere Lt ¢ 1))

Vo= Var(bd)+ XVar(b) -+ 2xCov(bi, b))
— #‘I"(m)(x:—x.:)z-i- ‘I"(m)(x.—Xo)"‘ } /(XI_XZ)I ................................................. (16)

Note that the bias of § does not depend upond n: or n: wile the variance of ¥ does. In the
following section, optimal values of m and n: are determined such that Vi, or equivalently
MSE($), is minimized.

3, OPTIMAL ALLOCATION OF TEST IEST ITEMS

Without Joss of generality we assume that the stress is standardized such that x;= —1 and
x==1, Under such standardization

Vo zswf(nl)(l_m)z_;‘_ ‘P'(l‘lz)(l‘f‘}{n}z} /4 ............................................................... (17)
Note that ¥’'(n) and ¥'(m) are trigamma functions defined as(e. g., see[1])

‘lIf’(l):Jrz/ﬁ ......... B M (18)



¥ (1+0)=¥'(n)—n
=~QI(1)_I§ (l‘l+1_i)_2, l'l:1. 2, ......................................................... (19)

Since m+m=N, Vs in Eq.(17) can be represented as a function of n.. That is,

(1) = 8o B ()1 R+ B (N ([ e (0)
Since f(n:) is a discrete function of m:, an optimal value of n: must satisfy

f(n)—f(nz + 1)= 1¥ () — ¥ (+ D (1+x)

+ {\I"(N—n:)—‘l"(N—nz—-l){ (1"’)(0)2 50 ........................................ (21)

f(n)—f(n—1)= (¥’ (nz)— ¥’ (n— 1)} {1 +x0)°
-+ {‘I"'(N—n:)—‘l"(N—nH—l)} (1_)“])2 20 ...................................... (22)
From Eq.(19).
¥ i{n)—¥({n—1)= —(m:—1)?
‘I”(n:)—‘P’(nz+1)=nz"2
P(N—n)— ¥’ (N—m—1)= —(N—m—1)"?
¥ (N—n)— ¥ (N—n:+1)=(N—n) >

Then, inequality (21) can be reduced to

f(nz)—f(l]z+ 1)
=n: -2 (1 +Xn)3_“‘(N"’nz‘_1) -2 (1‘_3{0)2'_(__0 ....................................  riwrsesdedidsEraRa s ( 23)

and therefore, m: must satisfy
(N—‘l)(x,n'f‘ 1)/(2Xﬂ)§nz .................................................................................... (24)
Similarly from(22},

f(n)—f(n:— 1)
—= —(nz_l) _2(1+Xn) 1+(N__n2)—2(1__XU)2 go ....................................................... (25)

which implies that
nzg {N(Xu'i‘ l)+X0_I} /(2)(13) ............................................................................... (26)

Combining(24) and (26} gives

(N— 1)(x”+1)/(2xﬁ)§m§ {N(Xn'i'l)-f-)(o—lf /(ZXu) ................................................. 27)
— 95—



The difference between the upper and lower bounds on n: is exactly 1, and therefore, there
exist at most two integer values of n: which satisfy (27). Since MSE(§u) is Bo+ Vs and B. does
not depend upon m or n, the optimal value of n: also minimizes MSE(Jc).

As an illustration of the above results, suppose that an accelerated voltage life test is to be
conducted to evaluate the time to breakdown of a type of electrical insulating fluid. The
use(so), Jow(s), and high(s:) stress levels are 25, 30, and 40kV, respectively. Further, 50
specimens of insulating fluid are available for the test.

To utilize the above development, we first transform the original voltage stress(s) to the
standardized stress(x) as follows.

x=(s—sn).”d
where

5m=(Sl+Sz)/2
d:(Sz_SJ)/z

Then, s and s: are respectively transformed to —1 and 1 as desired. Since s.=35kV and d=
5kV for the given example, the transformed use stress(x) becomes —2.

The optimai number of specimens to be allocated to the high stress level must satisfy (27).
That is,

12.255m:813.25

Therefore, n: becomes 13(or equivalently, m=N—n.=37).

4. CONCLUDING REMARKS

Under the uncertainty involved in the relationship between the stress and the mean
lifetime, a procedure is developed for optimally allocating test items to each stress level such
that the variance(or MSE) of the estimated (log-transformed) mean lifetime at the use condi-
tion is minimized. The results obtained in this paper are also applicable to the case of Type II
censoring with slight modifications. Tn Type II censoring the life test at the i-th stress level is
terminated as soon as r. failures are observed. Then, we can simply replace ni by & and
use (27) to determine the optimal value of ri. A fruitful area of future research may include
extending the present study to the case where Type I censoring and,or more than two stress
levels are considered. In addition, it is also desirable to conduct similar analyses to the .
present one for the cases of non-exponential lifetime distributions.
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