AR/ Journal of the Kovean Institute
of Industrial Engineers
Vol. 14, No. 2, Dec. 1938

A Tool for
Transformation of Analysis to Design
in Structured Software Development

Sung Joo Park®
Yang Kyu Lee *

abstract -

The primary purpose of this study is to develop an automation tool capable of convert-
ing the specification of structured analysis into that of structured design.

Structured Analysis and Structured Design Language (SASDL) is a computer-aided
description language based on ERA model and particulariged by ISLDM /SEM. The au-
tomatien tool utilizes the specifications of data flow diagram described in SASDL to pro-
duce their corresponding SASDL specification of structure chart.

“The main idea behind the automatic conversion process is to categorize the bubbles in
data flow diagram and to determine the positions of the bubbles in structure chart according
1o their categories and the relative locations in data flow diagram. To make the problem into
manageable size, the whole system is broken down into separate parts called activity units.

A great deal of manual jobs, such as checking processes leveling, checking data deriva-
tion of processes, deriving structure chart from data flow diagram, checking any inconsisten-
cy botween data flow diagramand structure chart and so forth, can be automated by using
SASDL and conversion tool. The specification of structure chart derived by conversion tool
may be used in an initial step of design to be refined by SASDL users.

1. INTRODUCTION

The whole process of software development may be segmented into a series of succes-
sive phases, that is, analysis phase, design phase, implementation phase, testing phase, and
maintenance phase.

Of these five phases, analysis phase and design phase are focused mainly in this paper.
The main emphasis of analysis phase is placed on what the software is to do and the
constraints under which it will perform its required functions. Design is concerned with
identifying software components, specifying relationships among components, specifying soft-
ware structure, maintaining a record of design decisions, and providing a biue print for the
implementation phase.

* Department of Management Science. Korea Advanced lnstitute of Science and Technology

Structurea analysis is a systematic, step-by-step approach performing analysis focused on
clear and concise communication. Structured design is a refinement of a top-down design,
which is an informal design strategy for dividing the large problems into smaller ones [8].
The main products resulted from structured analysis and structured design are data flow
diagrams and structure charts respectively.

The objectives of this paper are to develop a computer aided description language well
suited for describing the tools of structured analysis and structured design and to devise a
tool capable of automating the process of transition from structured analysis to structured
design.

Structured Analysis and Structured Design Language (SASDL) is a computer-aided
description language based on ERA model {1], and expressed in the ISLDM language of
ISDOS[15].

The transition tool produces the specification of structure chart from the specification of
data flow diagram by mapping the relations of data flow diagram into its corresponding
relations of structure chart.

2. CONCEPTS OF ANALYSIS AND DESIGN

1. Structured Analysis

Analysis usually leads to the specification of a new system which describes how to meet
the problem requirements. :

To make the specifications of analysis highly maintainable, partitionable, graphic, and
logical, structured analysis is equipped with valuable structured tools, such as data flow
diagram (DFD), data dictionary (DD), and structured english.

The data flow diagram, one of the structurd tools on which main emphasis of this paper
is placed, reveals the processes and the interfaces among these processes. According to the
notations of Tom DeMarco [2], data flow diagrams are made up of following four ele-
ments, data flows, processes, files, and data sources and sinks.

To accommodate the dynamic features of data derivation of a process, additional nota-
tions for selection, iteration, sequence have been used in drawing data flow diagrams.

A file is a temporary repository of data. A source of sink, sometimes called a terminator,
constitutes the system’s external environment. :

Applying structured concepts, DFD’s are partitioned effectively from top level to bot-
tem level called functional primitive. In partitioning the bubble into its child bubbles, the
data flows into and out of a bubble on a parent diagram are equivalent to net inputs and
outputs to and from a child diagram.

According to James Martin, data dictionary is defined as “A Data Dictionary is a
repository of data about data”. The definition of each data item consists of the data compo-
nents consisting the data item and the relationships among them.

There are three tools to specify process, structured english, decision tree, and decision
table.

2. Structured Design.

Structured Design is a disciplined approach, producing a “blue print” that the program-

mer can follow in implementing the system.

Structurcd Destgn uses two additional tools : pseudocode and structure charts. Pseudo-
code is a very high ievel language which is informal and flexible,

Structure chart shows the partitioning of a system into modules, their hierarchy and
organization of modules, communication interfaces between modules, and names of mod-
ules. Modules are defined as collections of program statements which makes transformation
on input to produce output. Predefined modules are provided by the operating system or
application library. The connections between modules are shown graphically by arrow con-
necting them. The module shooting arrow represents a caller module, and the one receiving
it a called module. There are two communication types, data and fltag. Data is processed by
the modules, whereas flag is not. The flag is used solely for making processing decision.

3. DESIGN STRATEGIES

1. Strategies for deriving an incarnation

To enable the essence of the target system to work, you must focus on how to imple-
ment that system using the available technology. The essential activities and memory of a
system are implemented using processors which are called their incarnation.

In the process of constructing the incarnation of the system to be built, you may follow
the following three steps, redefining the system’s physical interface with the ouiside world.
allocating pieces of activities to processors. and establishing infrastructural and administra-
tive activitees {10].

An important part of infrastructure activities is the translation activities among proces-
sors that reformat the data for either human or computer.

To compensate for the fallibility of the processors and the fallibility of the inter-
processor infrastructure, the administrative activities should be established.

As a result of deriving incarnation, each processor is divided into several activity units
composed of administrative, infrastructural, transform activity.

2. Relations between Analysis and Design

DFD is a statement for the description of the requirements of the target system,
declaring what has to be accomplished. Structure chart is a statement of design, deciaring
how the requirement shail be met. Contrary to the DFD the structure chart depicts the
bosshood,

The essential relationships between the data flow diagram and the structure chart are
concisely summarized by Tom DeMarco [2].

The top of the structure chart corresponds to the central transform portion of the DFD.
There is one vice-presidential module for each input stream, one for each output stream.
and one for the central transform.

For each input process on the DFD, there is one binary substructure (~Get™ module
and “Transform™ Module) on the the Structure chart. For each output process on the DFD,
there is one binary substructure (“Transform™ module and “Put” module) on the structure
chart. .

Lower levels of modules bencath a transform module correspond on a one-te-one basis
to subordinate processes on the DFD set.

The modules that corresponds to the transaction center process is itself a transaction
center, i.e.. it manages on subordinate module for each parallel process on the DFD.

‘?3.

Each subordinate moduie under the transaction center is allocated ome of the parallel
processes. These subordinates make up the “transaction level.” Under each transaction-level
moduie is a set of “action modules,” one for each defining action.

3. Transform Analysis

Transform analysis is the major strategy used in designing a program by identifying the
primary functional components and making a hierarchy among them. The whole point of
transform analysis is to convert the transform centered DFD of analysis to hierarchical type
of structure chart of design.

The structure chart must be built such that the top module deals with logical data while
the bottom module deals with physical, configuration dependent data. That is what a ba-
lanced system is.

The transform part, and its adjacent input and output components are entitled to the
top modules. The components of input and output part which deals with the raw data
represent the bottom moduies.

Next step of transform analysis is refining the first-cut structure chart by adding read
and write library modules, error handling modules, tnitialization and termination processing
and so forth.

4. Transaction Analysis

Transaction analysis is valuable in using the system to be built deals with transaction.
Transaction is a element or a collection of data that triggers one of the parallel processes,
called transaction modules.

The top module, that is transaction-center module controls the transaction module
according 1o the transaction provided‘Each transaction module is called by the transaction-
center module selectively and exclusively. The transaction modules are placed parallel to
each other.

In this type of system, the main module invokes the module for receiving input data,
which returns the transaction and its type. After receiving the transaction and its type, the
main module invokes the transaction-center module which invokes one of the transaction
modules accordibg the transaction and type.

5. Evaluation of the Design

After constructing the structure charis of the target system, it is of great importance to
evaluate the guality of them objectively. Among the several design criteria, coupling and
cohesion are stressed mainly. The desirable properties of the modules and their interfaces
are low coupling and high cohesion.

Coupling is the degree of interactions between modules [11]. Keep the coupling of the
system as low as possible in order to make the system highly maintainable, easier te modify,

possible to deviate the ripple ffect {a bug in one module appearing as a symptom in another).

Cohesion is the measure of the strength of functional assoctation of elements within a
module [11]. Coupling pertains to the *“intermodule interface”, whereas cohesion to “intra-
module interface”,

Another important criteria hardly overlooked is information hiding [12]. The - concept
of information hiding is that each modute is designed to hide a design decision from the
others. One of the objectives of information hiding is to make the system highly flexible.

74

4. SASDL AND CONVERSION

1. Tools to Implement SASDL

A Life Cycle Support System (LSS) is a generic name for a computer aided system
supporting the activities of system development in one or more phases of life cycle [15]. An
LSS receives system description, maintains a data base containing the system description,
analyzes the system description stored in a data base, produces documents and output on
request based on the system description, and preforms monitoring and other control func-
tions in the development of the software system.

In order to meet the need for various LSS's well suited for specific application areas,
the LSS generator was developed. The LSS generator is a computer-aided tool capable of
developing a specific LSS from the formal specification of LSS [15].

In this paper the LSS generator called ISLDM/SEM was used to develop an LSS capable
of specifying the tools of structured analysis and structured design.

ISLDM/SEM consists of Information System Language Definition Manager (ISLDM)
Ststem and System Encyclopedia Manager (SEM). ISLDM System is the LSS generator
Processor in ISLDMSEM. The functions of ISLDM are language processing, global analy-
sis, documentation generation, and table generation [5].

SEM is the generalized software for generating the LSS processor by particularizing
generalized table-driven software by means of a table.

The LSS generator is based on Entity-Relationship { E-R} model [2] because it is
natural and close to the view of the LSS user,successful in other LSS in the Past, and
consistent with the general system theory.

2. Definition of SASDL

SASDL contains 21 objects and 54 relationships of which 11 objects and 34 rela-
tionships are used for description of the analysis part { containing connection part), and the
rest are for the design part.

2.1 OBIECT

PROCESS performs transformation on the input data, producing output data. DATAF-
LOW is data transported between PROCESSes. TERMINATOR is a source of a sinker,
which represents the system’s external environment. STORE is a repository of data, namely
file in the DFD.

GROUP is a composition of ELEMENTs or other GROUPs. It is one or more data
elements in which a higher level data can be decomposed. MODULE is a collection of
program statement with four basic attributes : input and output, function, mechanics, and
internal data. LIB-MODULE is a predefined MODULE. INC-MODULE is a MODULE
coded internally to the caller MODULE.

CALL-CONDITION limits the calling condition of a caller MODULE. CALL-LOOP
provide the calling MODULE with the possibility of iterative call. ACTIVITY-UNIT is an
unit where the conversion is applied. TRANASCTION-CENTER object is used for identify-
ing the transaction centered parallel processes.

2.2 RELATIONSHIPS AND CONVERSION

Transform relation and trapsaction-center relation are the key relations in conversion
process. Transform-relation identifies input data and its resulting output data of a process.
Transform-relation can be correlated to simple-call-relation in the destgn part.

Transaction-center-relation identifies the relation of transaction center process’s trans-
mitting output data to its parailel processes. In the design part, transaction-call-relation
corresponds to it.

Selective- input-refation and selective-cutput-relation represent the relation of a pro-
cess's accepting or transmitting one of its three exclusive data parts. The relation can be
converted to call-either-or-relation in the design part.

Conditional-input-relation an conditional-output-relation represents the relation that a
process accepts r transmits its data depending on the specific condition, Conditional-impat-
relation. and conditional-output-relation can be converted to call-dep-on-refation in the de-
sign part.

Conditional-input-relation and conditional-output-relation represents the relation that a
process accepts or transmits its data depending on the specific condition. Conditional-input-
relation and conditional-output-relation can be converted to call-dep-on-relation in the de-
sign part. _

Compose-relation is for identifying which processes are the part of an activity unit. The
top modules in the activity unit are under the direct control of the activity unit. The
candidates for the top module are the transform processes, and their adjacent logical input,
and logical output process. The logical input processes adjacent to transform process are
enligible for the top modules. The logical output processes having adjacent transform pro-
cesses which transmits their input data are also enligible for the top modules.

Sequential-input-refation and sequential-output-relation represent the relation that a
process receives or transmits its data sequentially. These relations may be converted into
call-with-seq-relation in the design part.

[terative-input-relation and iterative-output-relation represents that the process accepts
or transmits data repeatedly for required number of tises. Call-loop-relation in the design
part may be used when converting these relations.

Manages-relation identifies which processes are the transaction centered parallel pro-
cesses.

3. Connection Tool

The unit of analysis to which the conversion precedure is applied is an activity unit.
For each activity unit, every process in it is identified and classified. According to the
property and the relative position in the activity unit, the process is allocated its location in
the structure cart.

A. Main part

For each activity unit, every process in it is identified. According to the property of the
process, the main module invokes other relevant module. By checking rules, no process is
converted twice,

B. Input part

If the property of a given process is logical input or administrative input, this part is
invoked. If the process is converted into modules for receiving input data, for making
transformation on the input data and for receiving transforned data.

To preserve the number of input data, output data and the name of the data, this
procedure invokes allocate corner procedure, producing n-array variables assigned the values
of input and output data of the process.

The module for receiving transformed data become the caller module and the module

?6

for receiving data and transformation become the called module.

The input process adjacent to the transform process is under the direct controf of
activity unit control module. It passes its output data to the activity unit control module.

The procedure for subpart search s invoked to check the subpart search relation for
each process. Every subpart process is placed on the same level below the transform
module.

If transaction-center-relation is used to convert the input data, the input part process
invokes allocate-transaction-center-procedure. It allocates the names of the transaction cen-
tered process to the two dimensional variables, and the input data and the output data of
each process is allocated to three dimensional variables, then invokes procedure for making
input module. It makes the hierarchical relations among modules. The top module is for
receiving final output data of the group of tramsaction centered processes. The values of
final cutput data had been assigned to the three dimensional variables. The next module
below the top module is transaction control module which calls the transaction centered
parallel processes and processes receiving input data.

For each input leaf, data decomposition procedure is invoked to decompose the data
according to the data structure.

C. Transform part

If the property of a process under conversion is transform, this procedure is invoked.
Transform processes are the core of the activity unit. Every central process is under the
direct conirol of the activity unit control module.

To minimize coupling, all central transform modules are located parallel to the activity
unit controf. The receiving data from the control module is the input data to the process
and passing data to the control module is the output data from the process.

Transform process is mapped to a single module, transform module. Modules for re-
ceiving and transmitting data are not required, because all the data couples are done
through the contro! module.

If transform-relation is used, locate the process under the activity unit control module
and make the data coupling as described above. If the transaction-center-relation is applied,
the process to deal this case the same that of input part. The difference is that the
transaction control module is controlled directly by the activity unit control, and there is no
module for accepting input.

D. Output part

When the property of a process is logical output or administrative output, this procedure
is invoked. The sturcture of the resulting modules is very similar to that of input part. The
main differences are the data passing type, calling relation, and leaf data to be decmposed
further. The relation type of a process is transform-relation, the process is converted to
module for putting input, module for transforming data, and module for putting output data.

The caller module corresponds to module for putting input data, and the called module
to module for transforming and patting output data.

If the transform relation is transaction-center-relation, allocates the values of transaction
centered processes and their input and output data to the multi-dimensional variables. The
top module is the module for receiving for first input data, controlling the transaction center
control module, The transaction control module contols the transaction centered processes
and processes for transmitting output which are located parallel.

5. EXAMPLE

1. Target System

This example was originally prepared by Meilir Page-Jones [11]. It was modified and
extended somewhat to increase clarity and to meet the purpose of this study.

The whole system is divided into § activity units. The activity unit recording customer
orders receives customer purchase orders from the customer. Validating process to check
the customer order follows. For each filled order, customer shipment authorization is issued
to atlow the department of shipping to make a shipment for the products. The insufficient
orders are back ordered and recorded into purchase orders waiting for parts file. In case of
occurring the insufficient order, insufficient notification is issued to the purchase in charge
of purchasing goods in need,

This example is decomposed up to level 3. The fevel to which the conversion from
anslysis to design is applied is level 2.

2. llustrative Results,

To demonstrate the conversion process, the SASDL specification of an activity unit and
some of its derived specification of the structure chart are shown below,

The activity unit recording cust order has been selected among eight activity units. For
each process in analysis part, there may be several modules correspond to it in design part.
DEFINE ACUN recording-cust-order ;

COMPQOSED OF validate-cust-acct-no,

validate-cust-part-line,

collect-valid-cust-purch-order,

rec-valid-cust-purch-order, format-ship-auth,

rec-back-order, format-insuff-notif;

DEFINE PROCESS validate-cust-acc-no
PART OF rec-cust-purch-orders ;
COMPOSES recording-cust-order ;
P-TYPE adin ;
NUMBER *“1.3.17:
TRANSFORMS cust-acct-no TO valid-cust-acct-no ;
RETRIEVES cust-acc-no FROM custs ;

Process validate-cust-acct-no may be converted into 3 modules, module for accepting
input data(get-cust-acct-no), module for validating input data (validate-cust-acct-no), and
module for retrieving data from file (read-cust-acct-no). If the property of the processes
recciving output data is transform, the caller module (get-valid-cust-acct-no) is called by
the activity unit control module. Otherwise it may be called by the modules for receiving
the next processes’ output data.

DEFINE MODULE get-cust-acct-no ;
CALLED BY get-valid-cust-acct-no

PASSING-DATA cust-acct-no ;

DEFINE MODULE read-cust-acct-no ;
CALLED BY get-cust-acct-no

RECEIVING-DATA cust-acct-no ;

DEFINE MODULE validate-cust-acct-no ;

CALLED BY get-valid-cust-acct-no
PASSINE-DATA valid-cust-acct-no
RECEIVING-DATA cust-acet-no
PASSING-CONTROL ok ;

6. CONCLUSIONS AND DISCUSSIONS

The objectives of this study are to clarify the relationships between data flow
diagram and structue chart, to develop a language capable of expressing data flow diagram
and structure chart, and to automate the process of conversion from data flow diagram to
structure chart. :

The computer-aided specification language is developed using the LSS generator called
ISLDMASEM. The specifications of structure chart can be derived from that of data flow
diagram and data dictionary using conversion tool,

By automating the part of analysis phase and design phase, a considerable amount of
rmanual jobs are no more needed, The consistency and completeness of the specification can
be increased drastically by utilizing the analysis reports. The graphical interface facility
capable of drawing data flow diagram and structure chart using the specifications of SASDL
is a valuable area of further research. The development of design simulator capable of
producing alternative specifications of structure chart from that of DFD and to evaluate
each design by design criteria may be another valuable area for further study.

References

1. Chen, Peter Pin-Shan, "The EntityRelationship Model-Toward A Unified View of Data,” ACM
Trarnsactions on Database Systerns, vol. 1, no. 1, pp. 936, Association for Computing Machinery,
Inc., Mar. 1976.

2. De Marco, Tom, Structured Analysis and System Specification, Yourdon Press, 1979.

3. Freeman. P., “Fundamentals of Design,” in Twforial on Software Design Techniques, ed. Peter
Freeman and Anthony 1. Wasserman, pp. 2-22, IEEE Computer Society Press, Sitver Spring,
MD 20910, 1983,

4. Gane, Chris and Trish Sarson, Stercired Systerns Analysis : Tools and Technigues, Prentice-Hall,
1979,

5. ISDOS, “An Introduction to the Use of Information System Language Definftion Manager (
ISDLM) and System Encycdopedia Manager (SEM),” ISDOS Ref. #MO320-0, ISDOS, Inc.,
325 East Eisenhower Parkway, Ann Arbor, Michigan 48106, Sep., 1981.

6. ISDOS, “Report Specification Interface { RSI) User’s Manual,” ISDOS Ref. # MO604-0,
ISDOS, Inc., 325 East Eisenhower Parkway, Ann Arbor, Michigan 48106, Feb., 1984.

7. Martin, James, Sysiemn Design from Provably Correct Consturces, Prentice-Hall, Englewood Cliffs.
New Jersev. 1985,

8. Martin, James and Carma McClure, Stnectured Techriques for Compuiing, Prentice-Hall, 1985.

9. Martin, Jusen, “From Analysis to Design,” Daarnation, pp. 129-135, DATAMATION Poster,
New York. NY 10022, Sep. 15, 1985.

?9

10.
il.
12,

13.

14.

15.

McMenamin, Stephen M. and John F. Palmer, Essenuial Systerns Anelysis, Yourdon Press, 1984.
Page-Jones Meilir, The Practical Guide to Structured Systems Design, Yourdon Press, 1980.

Pamnas, L.L., “On the Criteria to be Used in Decomposing the Systems into Modules,” Com-
nunications of the ACM, pp. HI53-1058, Association for Computing Machinery, Inc., 1972.
Teichroew, Daniel and Emest A. Hershey, III, “PSLPSA : A Computer-Aided Technique for
Structured Documentation and Analysis of Information Processing Systems,” IEEE Transactions
on Software Engincering, in Twiorial on Sofiware Design Technigues, ed. Peter Freeman and
Anthony I. Wasserman, pp. 211-218, fan. 1977,

Wasserman, Anthony I., “Information Systern Design Methodology,” Jowrnal of the American
Society for Information Science, vol. 31, no. 1, pp. 2543, Jan. 1980

Yamamoto, Yuzo, An Approach to the Generation of Software Life Cycle Support sysiems, Ph.
D. Dissertation in the University of Michigan, University Microfilms Irternation, Ann Arbor,
Michigan, 1981.

