{(RRRL} Joumal of the Korean Institute
of Industrial Engineers
Vol. 14, No. 2, Dec. 1988

An Efficient Heuristic for the Generalized Assignment
Problem

Tai Yun Kim*

Abstract

In this paper an efficient heuristic for the generalized assignment problem{GAP} is pre-
sented. A new lower bound that is slightly improved by adding the feasibility constraint is
used to measure the quality of solutions obtained by the heuristic. The heuristic was tested on
a number of large-scale random problems and a large sample of small problems. The heuristic
appears to be better than the best previously existing heuristic for GAP. Its effectiveness in
comparison of running times and closenesses to lower bound is discussed.

1. Introduction

Consider the following assignment problem, where there are n jobs to be assigned to m
agents. The resource of each agent is limited. The total available resource of agent i is bi.
Each job requires a amount of resource. The resource required by agent i to do job j is aij.
The jobs should be assigned to minimize total eperation cost, given the resource availability.

The problem described can be formulated as follows.

Minimize i% E‘.] CijXij {(GAP)

subject to 3 Xij=1 JE Jremrmm i (1)
j% aijXij<bi §E [revnrnrmmmemmnreesearaamannnenine e V)
Xij € 10, 1f iel,jel

where

* Department of Computer Science, Korea University

| 1, if job j is assigned to agent i
Xij= .
I, otherwise

Cij:cost of having agent i do job j
I:set of agents
I:set of jobs

This is the generalized assignment problem(GAP), which is well-known in Operations
Research.

The classical assignment problem is a special case of the generalized assignment problem in
which aij=1 for all i and j, and the number of jobs is equal to the number of agents. There
are many other applications of the generalized assignment model. Some of these are the
assignment of software development tasks to programmers, the assignment of jobs or data-
bases to computers in a computer network, the scheduling of variable length television or
radio commercials into time slots, the scheduling of payments on accounts where “lump sum”
payments are specified, vehicle routing problems for assigning customers to vehicles, and
fixed charge plant location models in which customer requirements must be satisfied by a
single plant. .

in 1975, Ross and Soland [10] developed a branch and bound algorithm for solving GAP,
as did Martello and Toth [8] and Fisher et al. [4]. The branch and bound algorithms of Ross
and Soland and Fisher et al. have a common feature. In both methods, the lower bounds are
obtained from a Lagrangian relaxation in which the constraint set

3 Xij=1 jel

is dualized, To set the Lagrangian multipliers, Ross and Soland used linear programming,
while Fisher et al. used a heuristic multiplier adjustment method.

Ross and Soland provided a lower bound for the generalized assignment problem by solving
binary knapsack problems, which will be biscussed in the next section. In the branch and
bound algorithm of Marstello and Toth [8], tower bounds are computed by using the Ross and
Soland scheme at each node of the decision-tree. Later, Ross and Soland[11] medified the
GAP algorithm to take advantage of the special structure of the facility Jocation problem.
Fisher et al.[4] proved that GAP is NP-complete, which suggests that it may be more
reasonable to devise good heuristic procedures to solve large-scale problems than to develop
exact algorithms.

Fisher and Jaikumar[3) presented a heuristic for the vehicle routing problem in which an
assignment of customers to vehicles is obtained by solving a generalized assignment problem.
The heuristic is based on a Lagrangian relaxation in which the multipliers are determined by
a multiplier adjustment method. Martello and Toth[8] also provided a heuristic, HGAP,
which exhibits good experimental performance.

2. Lower Bound

Ross and Soland{10] introduced a lower bound for the generalized assignment problem, but

42'

the bound can be improved as follows.
LB=Z+ _Zl zi
where Z is the optimal solution of the following problem.

Minimize £ X CijXij

(®) O e
aijXij<bi TEL, JET i (3)
Xije 1o, 1

where

Fi= i | X.=1! in the solution of(P), j€JI, for 1€l
I=1 - 2 aijXj >bi, 1€1}.
Zi, i€l is the optimal solution of the followint biinary knapsack problem.

Minimize ZF piYij
ieh

st. ‘E‘; aij Yij 2di
Yij € 10, 1
where

di= 3 aijXij — bi
jrEa

pj= M0 |Cik — Cij(i}

KeJ--ifer
where aik<bi
j(i) = job j having the minimum Cij for agent i, i€l
The lower bound of Ross and Soland did not take into account the feasibility constraint(3).
The lower bound has been slightly improved by adding the feasibility constraint to P and

the calculation of pj. This lower bound will be used to measure the quality of sclutions
obtained by the following heuristic NH.

3. New Heuristic(NH) for the Generalized Assignment Problem

(1) Basic Concept
This algorithm is based on a combination of the transportation simplex method .+ 7 he

Hungarian assignment method, It consists of two phases, initialization and improvement. In
Phase I, four rules are used to attempt to obtain a feasible solution. The first rule successively
assigns jobs to the agent having the maximum difference between the minimum cost and the
next lowest cost. The second rule(minimal-cost rule) successively assigns each job to the agent
having the minimum cost in whoch it fits. The third rule successively assigns each job, by
decreasing resource amount required, to the agent having the minimum cost. The fourth rule
is the best-fit-decreasing(BFD) rule. Each job is successively assigned to the agent for which
the resulting available resource is minimal, in minimal, in order of decreasing(or increasing)
resource amount required. This rule disregards the cost element, and therefore may result in
the most costly feasible solution. It is useful, however, when the sum of resource amounts
required is close to the total resource availability. All four rules may fail to find a feasible
solution.

We hope that every job is assigned to the ageat that results in the lowest operating cost for
the job. However, it may not be possible due to resource limitations. After finding an initial
feasible assignment in Phase I, adjustments are made in Phase Il to improve the assignment.
First of all, a cost matrix is built, in which the row indicates job and the column indicates
agent. As this algorithm is used to assign only single jobs, each row has only one assignment,
but a column may have more than one according to the resource availability of the agent.
Phase 1I tries to move each job to its best agent; that is, the agent with the lowest cost(or as
low as possible). If the agent having the lowest or lower cost element in a row is already
taken by another job(s) and that agent’s remaining resource is not enough for the new job,
this algorithm tries to move the old job(s) out and the new job in. This change is made only if
the decrease in cost thai results from moving in the new job is greater than the increase that
results from moving out the oid job(s).

(2} Heuristic NH

Define

.11, if dob j is assigned to agent i

Xij= i ;
0, otherwise

b = the initial resource availability of agent i

b’ = the currently available resource of agent i

Phase 1. Initialization
Rule 1:
Step 1. Let the set of jobs N = {1,2,~-, nl and the set of agents M = {1,2,-m}. Let
UU=N.
Step 2. For each j, je U, find
Ci'j = Minimum i)
ci j = Minimum |y

where aij<bi.

If no Ci"j exists, then apply Rule 2.
Pj=Ci'j—Ci*j. jeU
If Ci*j does not exist, Pj = o0,

Step 3. Find(i",) with
P’ = jhza{(;mum Pj}
Step 4. Assign j” to i’
vi© =Yi" —aif’
Xi'j =1
Remove j° from U. If U is empty, stop--an initial feasible solution is available.
Otherwise, return to Step 2.
Rule 2:
Step 1. Let the set of jobs N = {1,2,--,nf and the set of agents M = i1,2,--,mj .
Let
T =10,y | 1€M, jeNi.
Step 2. Find(i",;")with
Cij = pey™ iCill
If there are ties, choose the one with the smallest aij. When aij’s are the same,
choose the one with the largest b’j. If b’i” < ai’j’, go to Step 3. Otherwise, assign
to 1.
b'i° =b'i" — ai’y’
Xiy =1
Go to Step 4.
Step 3. Remove(i'j") from T. If T is empty, apply Rule 3. Otherwise, Return to Step 2.
Step 4. Remove(ilj"} from T and remove j from N. If N is empty, stop-- an initial feasible
souition is available. apply Rule 3. If T is empty, apply Rule 3.. Otherwise, return
to Step 2.
Rule 3:
Step 1. Let the set of jobs N = i1,2,--- i
Step 2. Find . j&N, with
Maximum -2 aij
jEN reM
Break ties arbitrarilv. Let the set of agents M = {1,2.---.mi.
Step 3. Find i". i€ M. with

Cirj = lmmum.cijy
If there are ties. choose the one with the largest b7i. If b'i” < aij", go to Step 4.
Otherwise. assign j” to 1. ’

biT=bj —aiy’

Xiy =1
Go to Step 3.

__10_

Step 4. Remove i from M. If M is empty, apply Rule 4. Otherwise, return to Step 3.

Step 5. Remove j from N. If N is empty. an initiai feasible solution is available. Comparc
the solution from this rule with the one from Rule 2. Choose the better one, and
then stop. Otherwise, return to Step 2.

Rule 4:
Step 1. Let the set of jobs N = |1,2,---,n]
Step 2. Find j% j €N, with
Maximum | aijf
jeN 1€N
Break ties arbitrarily, Let the set of agents M = {1,2,--,m}.
Step 3. For each i, 16 M,
b" 1= bi"— aij’
If all b”i’s<0, apply Rule 4.1. Otherwise, find i’, i € M, with
b”i” = MINMUM s it and b* i20
Break ties arbitrarily. Assign j” to i”.
b= b1 — ai’j’
Xi'y =1
Remove j” from N. If N is empty, stop--an initial feasible solution is available.
Otherwise, retura to Step 2.

Rule 4.1:
Step 1. Let the set of jobs N = {1,2,--,nf,

Step 2. Find j, j€ N, with

Minimum {3 aijf
jeN Q€N

Break ties arbitrarily. Let the set of agents M = 1,2,---,mf.

Step 3. For each i, i€ M,
b’ i =bi-aij’
If al) b”i’s<0, stop--a feasible solution cannot be obtained by this algorithm.
Otherwise, find i, i€ M, with
b i7 = MMM e and b7 i o0
itM
Break ties arbitrarily. Assign j° to i’
bi = bi — aij’
Xijr =1
Remove j* from N. If N is empty, stop--an initial feasible solution is available,
Otherwise, return to Step 2. :

Phase 1I. Improving the Initial Feasible Solution
Step 1. Let the set of jobs N = 1,2,-.n] and the set of agents M = [1,2,~--m} .

46

= | 1, if job j is assigned to agent i
1= 0, otherwise

Z=3573 CiXij
LB = lower bound
bi= bi—ZaijXij €M

Step 2. If Z = LB, stop--the current solution is optimal. Let Vij = Cij — Ci'j , j€ N, ieM -
[1Xi'j=1. and P = {(i,j) | Vij<0, i€M, je€Nj.
If all Vij >0, stop--an optimal solution is available.

Step 3. If P is empty, stop--the final solution is available. If Z = LB, that solution is
optimal.
Step 4. Let Vif = MR i
where Xi7j" = 1.
If there are ties, choose one with the smallest aij. If b'i"<ai’j, go o Step 3.
Otherwise, assign j° to i". Remove(i’,j’) from P. Let
bi =bi — aiy’
b~ = b'i~ + aij’
Z=Z—-Crj +
Xivj” =0
X7 =1
Return to Step 2.

Step 5. Set :
R=R =&j) | Vij < | Vij |, i+ aijzaij, Xi'j=1,i¢M, jeN
If R is not empty, go to Step 7.

Step 6. Remove (i, j°) from p. Return to Step 3.
Step 7. Let Vi'j’ = P{{}g‘i?;{m Vijh

where Xij’ = 1.
If there are ties, choose one with the largest v'i. If b i 2ai”j*, go to Step 8. If
Xi”{’ =0, go to Step 9. If b'i* + ai” j’2ai” j*, go to the next step. Otherwise, go
to Step 9.

Step 8. Move j* from i” to i”. Transfer j° to i". Let
bi = bl +ai’j” —ai’j
bt = bt + aiy’
yi* =b1 —ai’j’
Z=Z-Ciry+Cy —aj” +a’y”
Xirj"=Xi"}7=0
Nij=Xit) =

k.vurn to Step 2.

47

Step 9. Remove(i”, j*) from R. If R is empty, go to Step 10. Otherwise, return to Step 7.

R M.] -
Step 10. Let Vi*j* = (i.}?lznﬁin Viji
where Xi™j” = 1.
If there are ties, cuovse one with the largest bi. Let U= }j | Xi"’j=1, eN — j'|
. If U is not empty, go to Step 12.

Step 11. Remove(i”,j*) from R'. If R’ is empty, return to Step 6. Otherwise, return to Step
10.

Step 12. Let U'= ¢. SUMV = Vi“j*’ CIf Xivjf =1,
SUML" = ai’j” and SUML’ = ai’j’. Otherwise,
SUML" = SUML~* = 0.

Step 13. Let Vi'j~ = Mmmum jyzq;

jeu
Set U=U~— jjt
U’ =U" Ujj}

SUML" = SUML’ + ai’j~

SUML’ = SUML” + ai”j~

SUMV = SUMV + Vij~
Check the following constraints.

b'i’ + ai’j* 2SUML’

b’i” + SUML" Zzai*j”

SUMV< | Vi |
If those constraints are satified, go to Step 14. If U is empty, return to Step 11.
Otherwise, repeat Step 13,

Step 14. .Move j* from i" to i”. Transfer " to i’
Move all j, jeU’, from i’ to i". Let

b =bi +ai’jt — JE{I ai’j —aiy’

bi~=bi" + aij’

bi’ =bi” + ,2.:; ai']” — ai”j"
Z=7-Cj+Cj—-a7 +aG75 +G%j”

+ i?;.yCi’j - J.,EE.,CPJ-

Xiri’ =Xij* =0

Xij =Xt jv =1

Xt =0, je U’

Xi'j=1,jeU’
Return to Step 2.

(3) Optimality Criterion

This is the fundamental criterion for determining wheiher a particular feasible solution is
optimal or not. H a solution satisfies one the following conditions. its optimality is guaran-
teed.

1) If Vij is always greater than or equal to zero, this feasible soiution is optimal.

2) If the solution is the same as the lower bound LB, it is optimal.

Proof:

1) ¥ Vij is always greater than or equal to zero, every job is assigned to the agent that has
the smallest cost element for the job. The total operatin cost is the sum of operating costs
for all jobs. If each job is assigned to the agent with the lowest operating cost for that job,
it is obious that the total operating cost is the lowest. Thus the proof is obvious.

2) Any optimal solution cannot be better than the lower bound LB. The proof is also
obvious.

4. Computational Results

The algorithm NH was programed in FORTRAN and executed on the IBM — 3033. The
speed and accuracy of NH were tested by comparing its results with the computational results
of Martello-Toth[8] and by comparing the solution to the improved lower bound LB.
Problems were generated according to the procedure described by Martello and Toth.

Tabie shows the performance of NH on generalized assignment problems in terms of speed,
accuracy, and the number of times that no feasible solution was obtained by NH. Problems
were generated as follows. .

aij and Cij are integers selected from a Uniform disiribution between 5 and 25 and between
1 and 40 respectively, and

bi = [0.4(n/m)15 + 0.6 maxiZaijt P
i€l jel

Table. Computational Experience—GAP Problems

Average ~ $of times Closeness

running a F.§8. Was to (%)
p n | time not found* iower bound
HGAP NH HGAP NH HGAP NH
113 3 50 0.09 0.13 3 1 95.3 98.2
1.30 3 100 0.20 0.47 4 1 99.1 99.5
1.50 5 200 0.72 1.08 0 0 98.0 99.6
JO 10 50 .06 .12 0 0 07.4 97.8
.88 1) 100 0.48 1.08 5 0 95.8 97.3
1.12 10 200 1.40 2.85 1 0 4.7 98.3
22 20 S0 0.13 0.78] 0 75.2 82.5
.40 20 100 0.53 1.38 3 0 93.2 94.9
60 20 200 4.80 6.27 6] 95.4 97.3

Where CPU time s 1BM=3033 scconds. Ter problems were run {or cach entry. % feasible solutions were not

obtained by the heuristic. but the problem’s [casibility is unknown.

— 19—

where P is a constant, n is the number of jobs, and m is the number of agents.

The resulis in Table consistentty show that NH is superior to the GAP heuristic, HGAP, of
Martello and Toth[8]. NH and HGAP were coded and executed at the same time. NH was
slightly slower than HGAP, but its accuracy was much better. The slowness of a few seconds
in not significant. In addition, HGAP often does not find feasible solutions when they exist.
NH, on the other hand, finds a good feasible solution in most cases. In fact HGAP failed to
find a feasible solution for 23 problems while HN found a feasible solution for all buf 3
problems.

Two experimental designs have been implemented to check the performance of HN.
Computational experiments have failed to find a problem class that causes poor results.

5. Conclusion

This paper has presented an efficient heuristic for solving the generalized assignment
probiem. The algorithm consists of two phases, initialization and improvement. In the first
phase, four rules are used to aftempt to obtain a feasible solution. If an initial feasible
assignment is found, adjustments are made in the second phase to improve the assignment.
The algorithm does so in a polynomial effort. The heuristic algorithm was tested in terms of
speed and accuracy and found to be effective in solving real, life-size problems. A new lower
bound that is slightly improved by adding the feasibility constraint to the previously existing
lower bound is used to measure the accuracy of solutions obtained by the heuristic. In
computational experiments the heuristic outperforms other heuristics for the generalized
assignment problem.

References

1. Bulfin, R.L., Parker, and C.M. Shetty, “Computational Results with a Branch-and-
Bound Algorithm for the General Knapsack Problem,” Naval Research Logistics Quarter-
ly 26, 41, 1979,

2. Eswaran, K.P., “Placement of Records in a File and File Allocation in a Computer
Network,” Information Proceedings 1974, Proc. IFIP Congress, Stockholm, 1974,

3. Fisher, M.L. and R. Jaikumar, “A Generalized Assignment Heuristic for Vehicle Rout-
ing,” Networks, Vol. 11, 109 — 124, 1981.

3. Fisher, M.L., R. Jaikumar, and L.N. Van Wassenhove, “A Multiplier Adjustment
Method for the Generalized Assignment Problem, “Management Science, Vol. 32, No. 9,
1093 — 1103, 1986.

5. Jornsten, K. and M. Nasberg, “A New Lagrangian Relaxation Approach to the General-
ized Assignment Problem,” European Journal of Operational Research 27, North-
Holland, 313 — 323, 1986.

6. Karp, R.M., “Complexity of Computer Computations,” Reducibility among Combinato-
rial Problems, Plenum Press, New York, 85 — 103, 1972.

7. Kim, T.Y., Optimal File Allocations in Large-Scale Distributed Comptuter Networks, Ph.
D. Dissertation, Auburn University, Auburn, AL, 1987.

8. Martello, S. and P. Toth. “Linear Assignment Problems,” Annais of Discrete Mathema-
tics. 31, North-Holland, 259 — 282, 1987.

9. Ramamoorthv. C.V. and B.W. Wah, “The I[somorphism of Simple File Aliocation,”
IEEE Trans. Comput., vol. C— 32, No. 3, 221 — 232, 1983.

10. Ross, G.T. and R.M. Soland, “A Branch and Bound Algorithm for the Generalized
Assignment Problem,” Math. Programming, vol. 8, 92 — 103, 1975.

11. Ross, G.T. and R.M. Soland, “Modeling Facility Location Problems as Generalized
Assignment Problem, Management Science, vol. 24, No. 3, 345 — 357, 1977.

12. Suri, R., “A Decentralized Approach to Optimal Fite Allocation in Computer Net-
works,” 1EEE Trans. Comput., 141 — 146, 1979.

13. Urano, U., Ono. and S. Inocue, “Optimal Design of Distributed Networks,” Proc. Int,
Conf. on Comput. Commun., 2nd, 413 — 420, 1974.

