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Function Optimization Using Quadratically Convergent
Algorithms With One Dimensional Search Schemes

Do Il Kim*
Abstract

In this paper, a unified method to consturct a quadratically convergent algorithm with
one dimensional search schemes is described. With this method, a generalized algorithm is
derived. As it’s particular cases, three quadratically convergent algorithms are performed.
They are the rank-one algorithm ( Algorithm 1), projection algorithm ( Algorithm II') and
the Fletcher-Reeves algorithm ( Algorithm [II). As one-dimensional search schemes, the
golden-ratio method and dichotomous search are used. Additionally, their computer prog-
ramming is developed for actual application. The use of this program is provided with the
explanation of how to use it, the illustrative examples that are both quadratic and non-
quadratic problems and their ouiput. Finally, from the computer output, each algorithm was
analyzed from the standpoint of efficiency for performance.

1. INTRODUCTION

This paper is concerned with a method for setting up algorithms for the function
optimization of several variables. This algorithm requires the following properties : {a ) The
algorithms use one dimensional search only ; ( b) For quadratic function the algorithms can
converge quadratically and the required number of iterations at most must be equal to the
number of variables ; ( ¢ } The algorithms use only the problem function and it’s gradient ; (
d) The algorithms employ information of present stage and the just previous stage.

The property (a} avoids a multi-dimensional search. The property (b ) is very impor-
tant because even a non-quadratic function works approximately quadratically in the neigh-
borhood of the optimum point. So, rapid convergence can be assured in the final stage of
computation. The property {c} does not need second-order derivatives for computational
convenience. The property (d) is required to reduce the computer memory size. This
property is also important when we deal with a function with a large number of variables.
There are several algorithms that have all above properties. They are the conjugate-gradient
algorithm and variable metric algorithm, especially. Many authors have developed these
algorithms but they can’t give a clear generalized algorithm that can be developed 1o fulfill
ali above properties.
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A unified method was given so that a general algorithm could have properties (a)—(d
) by Huang [4]. As-one of it’s particular cases, many algorithms could be developed. They
are the conjugate-gradient method, variable metric algorithm, quasi-Newton method, projec-
tion method and simplified algorithm. In this paper (1) the rank-one algorithm ( quasi
Newton method ), (11) the projection method, and (III) the simplified method ( Fletcher-
Reeves algorithm)will be considered specially for their particular properties and efficiency in
performance. The quasi-Newton method has the property that the H-matrix tends to the
inverse of the Hessian of the function while the projection method can be thought for it’s
property that H-matrix tends to zero after certain number of iterations. The Fletcher-Reeves
method is developed for it’s simplicity for setting up the H-matrix. When one-dimensional
search is performed, these three algorithms work identically along every search. If the
function has a unique optimum point along every search direction, the behavior of algor-
ithms is independent of the search method employed. However, if the function has multiple
minima along a search direction, different search methods may bring different minimal
- points ; from these opints, one should investigate (a) their dependence on search methods
and (b) their dependence on search stopping conditions.

In getting a step-size, two direct one-dimensional search techniques are employed for
their power and simplicity. They are the dichotomous search technique and the golden-ratio
search. The dichotomous search technuque is highly efficient from the standpoint of reduc-
ing the interval of uncerainty with small number of search points. In the goldenratio
search. the location of the first two search points is independent of the total number of
search points employed.

Therefore the golden-ratio search technique does not minimize the interval of uncer-
tainty after a prespecified number of search points, so that this method is slightly less
efficient. But under the condition that the number of search points required to get a
satisfactory answer is mot known in advance, the golden-ratio search technique offers de-
cided computational advantage over the dichotomous search technique.

In this paper, these methods are used iteratively until a given precise stopping condition
is satisfied. However, the optimal step size could be calculated, conductig one dimensional
search. But when the optimal step size is applied to our algorithms, sometimes it can be
found that too many number of iterations are needed to reach to optimal point ; the optimal
step size from one dimensional search does not guarantee best computational efficiency. So
that, under certain condition, the relaxed step size would rather be employed for reaching
to the optimal point faster than the optimal step size. The performance of the relaxed step
size is also shown in this paper. That relaxed step size method can be either over-relaxation
or under-relaxation. Which relaxed step-size is more efficient depends on the characteristic
of the problem functions. It is observed that how efficient the under-relaxed step size is in
the example problems. ’

2. ALGORITHM WITH QUADRATIC CONVERGENCE AND IT’S GENERAL FORM
2.1 Nonorthoganality Condition

In order to set up algorithm that converge quadratically to the optimal point, we
consider a quadratic function f( X} given by



f(X)=a+bX"™+ {12)X" cx (1)
and the gradient g( X)) is given by
g(X)=b+cX (2)

Consider current point X; and next point X;+; with step @;.P,. The recurrence formula will
be givea by

X = X+ AX (3)
when
A X, = — a;P; ( for minimitation problem ) (4)

Where o, is step size and Pi is step direction.
The function at the next point will be

(X ) =X, — «P;) (3)

In order to get an algorithm having property (a), we should know P;, so (X4, ) becomes
function of @, only. At it’s minimum point

df( X; — a« P;)/da; =0
that is so when
gl Py =0 (6)

Where g4, is the gradient g( X;4)
from the equation (2)

gr1=gteaX (7)
From the equations (4), (6), {7), we obtain the following expression for step size ;-

a,=g'P/PTP, (8)
from the equation (1)

(X )=fX )+ gD X+ (1/2) aXT aX, (9)
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from the equations (8), (9), (4)

(X )~ (X)) = (gP; /2P, CP; (10)
Finally we could get nonorthogonality condition as follows

f(Xi4+, ) < f(X;) (for minimization)
as iong as

&b #0 (11)
If any vector satisfying above condition can be used as the search direction, Equations (3 ).
{4), (6) bring a complete algorithm having the descent property for the function f( X ). If
we choose P; with g, then the algorithm is called the gradient method.
2.2 Conjugacy Condition

At previous section, we could know that gradient g, at point X, and g; at a previous
point X; are related by

Bog=— 3 @ ChK—12]20 (12)
If we multiply either sides by P;, Equation (12) will be

8Py =— % PR (k=22]>0) (13)
Here, if following conjugacy condition is satisfied,

PCP=0(k—12i2j>0) (14)
the equation (13) will be

g P=0(kk—-2>j>0) (15)
and from the equations (10) and (15)

eP=0(—12]>0) (16)



From the linear algebra, we can generate a sequence of n non zero direction Po, Py, ", P.
in this way and these directions are linear independent. So, the only vector g, satisfying
Equation (16) is the null vector. Therefore we can get optimum point in n iterations, at
most. That is the quadratic convergent property.
2.3 Construction of Algorithm
There are many ways of choosing such a sequence of search directions, so we consider
algorithm satisfying the additional property (c) and (d) among many ways satisfying prop-
erties (a) and (b).
2.3.1 Search Direction
If we express P; in the form

P, =HE; (17}
from the Equations (14) and (15)
HCP=24dP(i—12j20 (18)

where
& 15 an arbitrary constant,

We could know if matrix H; has the property (18 ), the conjugacy condition will be satis-
fied.
2.3.2 The H-matrix

At the previous iteration, Equation {18) will be

H,_, CP, =3P, for —22j2 0 (19)

Subtracting Equation ( 19), From equation (18) we could get

H—H-)CP,=0fori—22>j20 (20)
If the matrix Hi is vpdated as H; == H;—; + AH;—, (21)
then, Equation (20) will be

AHi,CP,=0fori—22>j>0 (22)
Here, if the AH,—, has the further property that

AH;_;CPi—; =8P, —Hi, CP: (23)

then multiplying Equation (22) by «; and Equation (23) by ¢, and in the light of
Equation {4) and Equation (7 ), we could get
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AH_, Agg=0fori—22>272>0 (24)
and

AHi_, Agi = 8AX,_; — Hi—y Agi_ (25)
where

Ag =g — &

Now in order to satisfy Equation {25), we can assume

AXi 1 ¥in, Hi_y Agia Z
H. = —_
i Vit Agiy ZE ) A (26)
then if the following conditions are satisfied,
yT Ag =02 Ag=0(—22j>0 (27)

AH,_, satisfies Equation { 26) and Equation (21 ) will give new matrix H;, Now, because
of the desired property (d), we observe that Equation ( 14) for the previous iteration is

PL,CP,=0(—22j>0) {28)
using Equations {4}, (7). then Equation (28) can be

AX;L, Agi=0(—22>j20) (29)
Next, from Equation (153), at the previous iteration

AgT P=0(—2>j20) (30}
Because of Equation (19 ), Equation (30) imphes that

Agi— H- CP=0(—22j20) (31)
using Equations (4), (7), Equation (31) can be
AgTl i H_, 8g=0({—22j>0) ' (32)

Comparing Equation (28 ) and Equation ( 31) with Equation (27 ), we see that y;— and z
—; can be chosen as AX;—, or HL, Ag or both of them, so, in general, we can write

Yo =C, AXi—, +C HL, Agi, (33)



and

Zi =K, AX,— +K, HiL; Ag, {3

-
[
—

where C;, Co, K,, K, are scalar coefficients.

Finally, we can conclude that the conjugacy condition Equations ( 14) is satisfied, if
the matrix H is updated according to Equations (26}, (33), (34). By different choices of
the constants in Equation ( 26 ), different algorithms can be generated.

2.3.3 Initial H-matrix
According to the updation formulas (21), (26}, (33), (34), the search direction (17
) can be written as

P=8q {35}
where £ is a scalar defined by
B,=1—Ky(bsgl; Hy g)/(zy Agi—y) (36)

and q; is an (nxl) vector defined by

o aXi ﬁgi'vr—1:| T '
=1 [ AXL, Ag Hy g {37)

In the light of Equation (35}, Equation (10} becomes

f(Xi1) — f(X) = — (& 0.7 /29/ Cq; (38)
Therefore, the nonorthogonality condition Equation (11 ) is replaced by

gg* 0,(n—12iz20 (39)
Now, we could know that the nonorthoganility condition Equation ( 39) can be satisfied if

gHig#0, 0—12i20 (40)

Since the gradients at different points are linearly independent, the initial matrix Hy which
satisfies condition Equation {40) must be such that the matrix A defined by

A=1/2 (H,+Hp (41)

2.3.4 Setting up the General Algorithm
Finally, from the previous analysis of the properties of matrix H and initial matrix H,
we can generate and algorithm having properties (a)-(d) in the following way :
i) chnos‘. the initial matrix Hy such that A is positive definite or negative definite where
= (1,21 \Ho+ Hf). Here if Hy is symmetnc then A = H,, meaning that H, must
bc piv 7 or negative definite.
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ii) update the matrix using the relation

AXi (G AX L+ 6 H, ag )"
(C, AXi_, + CHL, Agi ) Agie

Hi == H|—| + J'Io

H_, Ag (K aXi1 + kLHL, Agi_y)
(K; X +KH_, Agi— ()" Agi (42)

where 2, C;, Co. K,, K, are arbitrarily given real numbers and K; and K; must not
vanish simultaneously.
iti) update the point X using the relations

Pi=H; g, AX;= o, P, X, =Xi — &% (43)
where @; can be determined by a one-dimensional search along the direction P;.
3. PARTICULAR OUADRATICALLY CONVERGENT ALGORITHMS

3.1 Algorithm I
By setting § = 1, C; = +1, C;= —1, K, =+1, K; = —1 in the generalized form
in section 2.3.2, we could get the algorithm

(AX_—H_ag ) (AXi— H, agi))”
(aXin —HYy Ag_)" Agia

H;=H—, + (44)

where H, is defined to be (N x N) identity matrix and
Agi i =g — Bi—

This algorithm is restarted with H; =1 when the inequality
! g P; | <E

is satisfied where E is given small positive number or this algorithm can be restarted after n
iterations with H; =Hy; =1

3.2 Algorithm 11
By setting K; = 0 and K, =1 and & =0 in the generalized form in section 2.3.2, we

get algorithm

N
Hi_, A8i-1 Agia Hi_,
Agt 1 H_, Ag

H=H-, — (45)
This algorithm has Hy ==1 and is restarted at every nth iteration with H;=Hs =1
3.3 Algorithm IIL.

For the uniqueness of search direction, the sequence of search direction can be defined
in the form



Py = H g, {46)

T
- $ Hog X1
P, = [Ho _.EDW o (47)
If the initial matrix Hy is summetric, the search direction simplifies to
T
— g Ho g
Pi=Hog T pr , = Bt (48)
because the following condition gold
g Hom=0(1—12j20 (49}

If the initial matrix H, is the identity matrix, that is, if Hy = I, then Equations (46), (48)
for the search directions are simplified to

Py =g (50)

T
gi &
P=g + 22— P_
i g1+ gi:r_] g, i—1 (51)
The algorithm represented by Equations (50), (51) is characterized by the following up-
dating formula for the H—matrix
"
gi Piy
H=1+—7—7 52
=1 gi—1 &1 (52)
This algorithm is restarted at every (n -+ 1)th iteration, counted from the previous starting
or restarting point. This algorithm has the property that matrix Hy, is the identity matrix.

3.4 Stopping Condition
Since optimum condition

g(X)=0

can be achieved at any iteration, so above algorithms are stopped when

i) gFg; < E when E is small real positive number

i) The total number of iterations = n when n is given number. In practice the realization
of quadratic convergence on computer requires that highly precise arithmetic be used
together with the high accuracy in the one dimensional search. In this consideration, the
search is stopped when '

| glt; P; | <E when E is small real positive number

Especially, this precise stopping condition is necessary for non-quadratic function.



4. APPLICATION TO NON-OUADRATIC FUNCTION

To apply Algorithms (I)-(11I) to the minimization of a non-quadratic function, the follow-
ing considerations are taken.

4.1 Starting Condition

For algorithms (I)-(III), any initial matrix Hy, must satisfy the condition that the matrix
(Ho + HY/2 is either positive definite or negative definite. In particular, H, can be the
identity matrix.

4.2 Restarting Condition.

Generaily, at the non-quadratic function, the minimal point can't be reached in n
iterations, that means some more further iterations are needed. At this case, the algorithm
may be restarted by setting

H,' = HO
There are two conditions where the restart can be taken ;

1) when the inequality
g'P; < E Where E is prescribed smali numbr

is satisfied, while the stopping condition is not satisfied
ii} at the nth or (n+ 1)th iteration, counted from the previous starting or restarting

point.
4.3 Stopping Condition

For a mon-quadratic function, the stopping condition of quadratic function may bring
either a minimal point or nonminimal stationary point. But the probability of occurance of
nonminimal stationary point can be reduced by selecting very small constant of E in stop-
ping condition of quadratic function.
4.4 Precision Requirement

The precision requirement of guadratic function also hold for non-quadratic functions.
This ensures fast convergence in the neighborhood of the minimal point.

5. NUMERICAL EXAMPLE

5.1 Quadratic Function
5.1.1 Starting Condition

H:): I
where I is the identity matrix

5.1.2 Stopping Condition
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An algorithm is stopped when

gl g <E
the small number E is given by

E=10"
5.1.3 One-Dimensional Search

The one dimensional search is stopped when uncertainty of interval is less than or equal
to E. The small number E is given by

E=10"

5.1.4 Example problem (I)
The following problem of minimizing the quadratic function was considered.
I= (X} + Xg + USX;,)Z + (X + ZXQ + X'_z, + X4)2
4+ (X + X+ 153X+ (0.5, + X, + 1.5, — 0.5)
This function admits the minimum f =0 at the point defined by
X, =05, X;=—05, X;=0, X, =05
The starting point of this problem is the point defined by
X, =4, Xo=4, Xy=4, X, =4

for a given initia} matrix, all our three algorithms show same sequence of points, converge
to the solution in almost same number of iterations. The result is shown in Table 1 using
algorithm I and dichotomous technique.

Table 1.
K Y X, X, Xs ). ¢!
0 828.2500 4.00000 4.00000 4.00000 4.00000
1 0.5788 1.47216 -1.33851 0.74740 0.37618
2 0.0666 1.32077 -1.39190 0.40092 0.85364
3 .0649 1.30950 -1.36094 0.36696 0.83314
4 0.0646 1.32535 -1.36572 0.36674 0.83693

Optimum Solution
No. of iterations=3 X value=(0.49996, 0.49999, 0.00602, 0.50001} Y value=0.0000
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5.2 Non Quadratic Function
5.2.1 Starting Condition

For any algorithms, the initial matrix H, satisfying (H, + Hg)/ 2is positive definite or
negative definite can be used. The symmetric matrix was better. So that the following H,
matrix was used

Hy=1

5.2.2 Stopping Condition
An algorithm is stopped when

g e <E
The small number E is given by
E= 10"

but for a non quadratic function, above condition may lead minimum point or a nonminimal
point. The probability of leading nonminimal point can be reduced setting E to very small
number.
5.2.3 Restarting Condition

In general, optimal point cannot be reached in n iterations and further iterations may
be needed. At this case, an algorithm can be restarted by setting

H; =H,

While the stopping condition is viclated, an algorithm needs restarting when the follow-
ing inequality

| gp | <E
is satisfied. The small number E is given by
E=16™
5.2.4 One Dimensional Search
The one-dimensional search is stopped satisfying same condition as the case of quadra-
tic function.
5.2.5 Example Problem (II)
f=1000%2 — X +(X; — 1P
with starting point defined by

X712, X,=1.0



Table 2.

K Y X X, Step Size N
0 19.3999 1.20000 1.00000 0.0 0
1 2.5610 1.09668 1.04297 0.000488 18
2 0.1659 1.05065 1.06344 0.000488 18
3 0.0379 1.04230 1.06739 0.000488 i8
4 0.0032 1.03656 1.07011 0.000488 18
5 0.0017 1.03564 1.07054 0.000488 18
6 0.0012 1.03499 1.07083 0.000488 18
7 0.0012 1.03488 1.07087 0.000488 18
8 0.0012 1.03480 1.07088 0.000488 18
9 0.0012 1.03478 1.07088 0.000488 18

10 0.0012 1.03475 1.07086 0.000488 18

1 0.0012 1.03358 1.06775 0.109359 18

12 0.0011 1.00170 1.00287 0.022384 18

13 0.0000 1.00159 1.00292 0.000483 18

14 0.0000 1.00151 1.00296 0.000488 18

15 0.0000 1.00150 1.00297 0.000488 18

Optimum Selution
No. of jterations=16 X value==(1,00149, 1.00297) Y value=0.0000

Minimization of this function was satisfied when
X, =1, X;=1 with f=10

The result of this problem was given by Table 2 using algorithm III and dichotomous
technique.

5.2.5 Example Problem (III)

f=(X; + 10X,)* + 5(Xs — XoF + (X2 — 2X5) + 10(X,; — Xo)'
with starting point given by

X, =10, X, =10, X; =10, X, =10
minimum point can be reached when

X, =0, X,=0, X;=0, X, =0



The result of this problem using Algorithm I and golden ratio method is given in Table 3.

Table 3.
K Y X, X, X3 Xa Step Size
0 22100.0000 | 10.00000 10.00000 10.00000 1¢.00000 0.0
i 14501.3828 9.95403 10.37608 {  8.32853 10.00000 0.000209
2 1621.9902 8.57425 —£).56650 2.73564 9 88178 0.066033
3 1495.3867 9.33373 —0.76857 2.62514 836524 0.009117
4 1288.3750 2.59742 -0.21852 2.88539 2.35752 0.193480
5 91.4339 2.59612 0.58644 1.25489 2.36303 0000946
0 22.0516 2.45322 -0.15869 0.81290 2.30126 0.005996
7 17.3261 2.45682 —0.16751 0.80209 1.78873 0.033668
8 9.6233 0.96251 -0.04383 (.85112 0.76378 0.192287
9 3.1332 0.95172 0.04183 0.50671 0.7731% 0.007925
10 1.2616 0.93008 -0.08748 0.38944 0.76006 0.008380
11 0.7821 0.90335 -0.09130 0.33304 0.52578 0.065161
12 0.3625 0.44944 -0.05208 0.35%06 (.31052 0.264631
13 0.2499 0.44977 -0.02241 0.32131 0.31592 0.009117
14 0.1125 0.44092 —0.04435 0.23712 {1.32469 0.027389
15 0.9591 0.42298 —0.04637 0.13444 0.21122 0.146374
16 0.0309 0.23714 -0.02901 0.13126 0.15545 0.551651
17 0.0228 0.23714 —0.02102 0.17682 0.15712 0.00539%6
18 0.0125 0.23503 -0.02317 0.14819 0.16733 0.044923
19 0.0049 0.22331 -0.02298 0.10084 0.10044 0.442021
20 0.0019 0.11218 —.01223 0.08684 0.07621 1.632118
21 0.0015 0.11233 —.01042 0.08559 0.07707 0.007925
22 0.0009 0.11206 -0.01109 0.07896 0.08148 0.046852
23 0.0002 0.10640 -0.01067 0.04574 0.04543 1.82971
24 0.0000 0.02266 —0.00237 0.03341 0.03123 9.721335
25 0.0000 0.02269 -0.00208 - 0.03309 0.03152 0.012976

Optimum Solution
No. of iterations=26 X value=(0.02266, 1.00226, 0.03219, 0.03231} Y value=0.0000



6. DISCUSSION OF OUTPUT

For 3 example problems, all three algorithms were performed and for each algorit »,
two one dimensional search schemes were carried out. For problem I, the relaxed sicp
size instead of optimal step size was also employed. The results were presented in Table 4

Table 4.
One Example .
Algorithm Dimensional Problem I Problem 11 Problem III
Search relaxed
I Dichotomous 5 & 26 50
Golden-ratio 3 12 29 45
I Dichotomous 4 50 26 37
Golden-ratio 4 38 26 37
I Dichotomous 5 16 35 77
Golden-ratio 5 i5 31 77

From the above result, the following comments are detected :
a) The use of relaxed siep size cause the increase in the number of iterations. The major
failure of relaxed step size appears in the final stage. The singular Hessian may be

encountered near-by minimal point.

b) For problem II, the initial stage involves a lot of number of iteration. The reason can
be thought that the nonminimal stationary area may be encountered. For Problem I1I,
the final stage involves lots of iterations. The Hessian matrix at minimum point is
either singular or zero.

¢) For problem 11, algorithm I is superior to algorithm II while for problem III, algorithm
Il is better than algorithm I reversively. This result shows that the function f(X) with
much higher order than two has a singular Hessian at the minimal point. For that case.
algorithm 1 {quasi-Newton method) converge slowly. But algorithm 1I {Projection

method) seems to be less affected by such situation.

7. CONCLUSION

In :- - -.r, a unified method 1o construct algosithms for the function minimization
with scv.ral »orivhles was described. The following properties are required : (a) the algor-

ithms -
cap: '
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“wensional scarch only ; (b) for the quadratic function, the algo-ithms are
‘rning quadratically to the minimal point in a aumber of iteration~ -:ual at



most to the number of variable ; (c) the algorithms employ the function and it’s gradient
only; (d) the algorithms employ only information at the present stage and immediately
previous stage. It was shown that Algorithm I (rank-on algorithm), Algorithm II (projection
algorithm), Algorithm III (fletcher-reeves algorithm) can be obtained as particular cases.
The application of these algorithms to non-quadratic function was discussed. Additionally, in
order to secure step size, two efficient one-dimensional search schemes ; dichotomous search
technique and golden-tation search method, were studied. Particularly, in using step size for
getting new search point, sometimes, the relaxed step size can be more efficient than
optimal step size taken from one-dimensional search. It’s efficiency was examined in the
several example problems.

For the easy application of these algorithms to actual function optimization problem, a
versatile computer program was developed and performed for several quadratic and non-
quadratic function. In order to verify the property of these algorithms, 3 numerical exam-
ples ; one quadratic function and two non-quadratic functions, have been studied. For a
quadratic function, given initial point X, and initial matrix that is symmetric, Algorithms
I-III show almost in N iterations at most. From the discussion of the computer results, it
was shown that the algorithm I converged rapidly near by the minimal point for non-
quadratic function and the restarting scheme took a very important role in determining the
number of iterations for convergence.
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