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M/G/1 Queue With Two Vacation Missions

Ho Woo Lee*

Abstract

We consider a vacation system in which the server takes two different types of vacations
alternately. We obtain the server idle probability and derive the system size distribution and
the waiting time distribution by defining supplementary variables. We show that the deco a-
position property works for these mixed-vacation queues. We also propose a method directly
to obtain the waiting time distribution without resorting to the system equations. The T-policy
is revisited and is shown that the cost is minimized when the length of vacations are the same.

1. Introduction

In this paper we consider a queueing system in which the server leaves for a vacation as
soon as the system becomes empty. When he returns from the vacation to find no customers,
he immediately leaves for another vacation, but this time differently distributed from the first
one. We call the first vacation the ‘first type’ and the second vacation the ‘second type’.
These first and second types of vacations alternate until the server finally finds at least one
customer. We can view this queueing system as the one in which the server has two different
missions to fulfill during his vacations. If the first and second types of vacations are distri-
buted the same, this vacation model corresponds to the second model of Levy and Yechiali
[4]. If both types of vacations are constants of fixed length T, this is exactly the system with
T-policy introduced by Heyman|[3].

For the M./ G.”1 queue with server vacation, Fuhrmann and Cooper[3] proved that the
waiting time can be decomposed into the waiting time in the ordinary M/G./1 queue and
the residual vacation time. We-show that this decomposition property is still valid for two
types of vacations and even for multi-types of vacations by deriving the system size and
waiting time distributions. In section 2, we derive the server idle probability. To state the
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result, the server idle probabbility(i.e., the probaility that the server is on vacation) is not
affected by the vacation policy. In section 3, we define the supplementary variables to set up
the system equations and derive the system size distribution. In section 4, we obtain the
waiting time distribution and propose a method that enables one to directly derive the waiting
time distribution of any combinations of vacations without resorting to the complicated system
equations. In the last section, we revisit the T-policy and show that the system is optimized
when the two vacations are of the same length under the cost structure of Heyman [3].

Server Idle Probability

Customers arrive according to the Poisson process with rate A . We consider only the naive
customers so that no customers balk and renege. Let Tv be the total vacation period, i.e.,
time from the system depletion until the server begins to be busy. Let Ts be the server
occupation period. This occupation period is different from the busy period of Baba[l] in
that we do not consider the zero-length busy periods that arise when the server finds no
customers upon return from a vacation. But our occupation period enables one to obtain the
busy period considering the number of vacations in the total vacation duration. Hence
without loss of generality, we may call the occupation period the busy period which makes
more practical sense. In the sequel, **’ denotes the Laplace-Stieltjes transform(LST) of the
corresponding random variables with transform arguement ¢. Let V and U be the random
variables denoting the first and second type of vacations with distribution functions V(t) and
U(t) respectively. Then we have

Pr(no customers arrive during a first type of vacation)

:j‘(‘:eAA‘dV(t)=V‘(/\) .................................................................................... (2.1)

and
Pr(no customers arrive during a second type of vacation)

:j’:e-udU(t) SR ) rereeree e (2.2)

The number of vacations in the total vacation duration is a geometric random variable.
Hence, we have

v with probability 1—V*(4)
V+U with probability V*(A)[1—U*(2)]

Tv={ V+U+V with probability V*(A)U*(2) [1— VAR )] rereesmmesmnmmsmsessnenenes (2.3)




Then the LST of Tv is easily obtained and is given by

ey LUV VH(e)U*(6) +[1—V*(2)] V*(6) 5
Tv (6)—‘ I—V*(A)U*(A)V*(B)U*(e) ...................................... (L4)

and the mean of Tv becomes

E(Tv)= —(d./de)Tv*(0)= Eg\i)\j_*\(/;()'t])i(f)) ................................................... (2.5)

Now, the busy period Ts is initiated by the customers arriving during the total vacation
duration. Let K be this number. Then we have

Pr(K=k)=V(k,) [1+V*(A)U*(A)+(V*( 1) (U*(1) )>+...]

FUKR V(A [TV OU(A)+(VH(A) pP+..]

SVOOEVIOUGD 08
1-V*(A)U*(A) -

where

V(k,t)=Pr(k customers arrive during the first type of vacation)

:I;TE:_IIE!_AQk_dV(t) ......................................................................................... (2_7)

and

U(k,t)=Pr(k customers arrive during the second type of vacation)

= j':-CLk'AELdU(t) ............................................................................. (2.8)

Then the probability generating function(PGF) of K becomes

K(2)=3 2Pr(K=k)

_ V(A= A9+ V(DU QR = A=V VU)o 29
= =V*()U(4) (29)

and the mean of K is given by

Vt
E(K)=(d/dz)K(1)= A E—(XZF—,{ )éf({{E)(U)] .................................................... (2.10)

The busy period Ts can be represented as a random sum:
Ts=B.+B:+..... B o P R PP RRPEE (2_11)

where B is the sub-busy period of an ordinary M,”G,”1 queus with generic respreseniation
B. Then the LST of Ts becomes
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V*(A—AB*(8))+V*(A)U*(A —aB*(e) )—V*(2)(1+U*(1))

Te*(8)=K(B*(8) ) 1—V*(2)U*(])

- (2.12)

and its mean becomes

E(TB)= —‘(d/de)T3(0)= IjAES()S) . EI(Y)\/ﬁzl;()éz(E'({l;) ................................. (2.13)

where S is the service time random variable. Finally the server idle probability is given by

E(Tv)

Pr(server is idle) =g iy =1

— AE(S)=1— P verernmeseie (2.14)
This server idle probability is the same as that of ordinary M./G,/1 queues. It appeals to our
intuition that the increase of system size due to the server vacations prolongs the busy period
with the same rate as the customers found by the returning server increase the total vacation
period. Actually it can be seen that the server idle probability is not affected by any
combinations of vacation policy as long as the server immediately takes another vacation
when he finds no customers waiting for service. This is due to the following reasoning:the
mean of Ts is, from eq.(2.11), given by E(B)E(K) where E(B)=E(S).”(1— AE(S)). But
E(K) is the mean number of customers arriving during the mean total vacation duration
which gives us E(K)=A -E(T.). Hence,

Pr(server is idle)=E(Tv),” [E(B)E(K)+E(Tv)] =E(Tv)/ [E(Tv)( A E(B)+1]
=1— AE(S)=1—1F

3. System Size Distribution

In this section, we define supplementary variables to derive system equations. The sup-
plementary variables are the remaining service time, the remaining vacation time of the first
type and the remaining vacation time of the second type. Similar derivation of the system
equations with one type of vacation can be found in Baba[1]

Let N(t) be the number of customers at time t. Since we are interested in steady-state
behavior, initial state of the system can be arbitrary. Define following random variables and
probabilities:

0 if the server is in the system
Y= {1 if the server is on vacation of the first type
2 if the server is on vacation of the second type
S=remaining service time for the customer in service
V=remaining vacation time of the first type
U=remaining vacation time of the second type

Pn(x,t)=Pr(N(t)=n,x<S§x+dx, Y—_—O) 1,2, soverreerrersseenn i (3'1)
Qn(x,t)=Pr(N(t)=n, ,<V§+d, Y=1) 0,1, e e s errrrm e (3‘2)
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Rn(x,t)=Pr(N(t)=n, ‘<USx+dx, Y=2) N=0,1,... o eereree et (3.3)

Let s(x), v(x) and u(x) be the probability density functions of service time random variable S
and vacation random variables V and U respectively. Then we have

Pi(x—dt, t+dt)=pi(x,t) (1— A dt)+PxAo,t)s(x)dt+ Q:(o,t)s(x)dt
+Rl(0,t)s(x)dt+0(dt) ................................................................. (3.4)

Subtracting Pi(x,t) from both sides and dividing by dt as dt tends to O yields

—(8 ./ 9x)Pi(x,t) + (8 / 3 t)Pi(x,t)= — A Pi(x,t) +P:(0,t)s(x)
+Ql(0,t)S(X)+Rl(0,t)S(X) .................................... (35)

In the similar way, we have following steady-state systems of equations:
(d/dx)Pi(x) = A Pi(x) — P(0)s(x) = Qu(0)5(X) — R(0)S(xX) -+++++++eerrrsemmrresunsermsmmninniiinnnns (3.6)
(d/dx)Po(x)= A Pa(x) — A Pa-s(x) = Par1(0)s(x) — Qu(0)s(x)

—R(0)s(x) (D22) rervemerernensenmenmnsinsennasnnns (3.7)

(d/dx)Qo(x)= A Quo(x) —P:(0)v(x)—Ro(0)v(x)

(d/dx)Qu(x)= A Qu(x)— A Qu-1(x) (A1) wereerermememerenenineses (3.9)
(d/ dX)Ro(X)= A Ro(X) = Qo(0)(X) -++++++-r+sserersssmssnsmmmnsssssas s (3.10)
(d/dx)Ru(x)= A Ru(x)— A Ro-i(X) (103 ) RERIETERT RIS PSRRI (3.11)

Taking Laplace transforms on the above differential-difference
equations, we have

6P*(6) — Pi(0) = A Pr*(6) — Po(0)S*(8) — Qu(0)S* (8) = Ru(0)S*(8)-+-++++++++coveverssnsreremensnens (3.12)
8P (8)— Po(0)= A P.*(6) —AP:-1(6) —Pri(0)S*(6)

— Q.(0)S*(6) — R(0)S* (6) (ND2eresesmeessenesinssenncs (3.13)
80" (6)— Qu(0) = A Qu* (6) — Pi(O)V*(6) — RAOYV*(8) r-++++++rrveeeersssssrvmnmmsnsssnconneeass (3.14)
6Q. () —Qu(0)= A Q" (8)— A Qu"(6) (R21) everereresseeseemenennane (3.15)
6R* () — Ro(0) = A Ro™ () — QuO)U*(B) «++++cvsessessrssrssmsnssssssssssis st (3.16)
6R.*(6)~ Ro(0) = A R.*(6)— A Rut*(6) (R21) +roeeeeeeees e (3.17)



Define p(z.0). Q(z.0) and R(z, 0) as the PGF s of P.(0), Q«(0) and R.(0). respectively. Also
define following double transforms:

P*(Z’e):ngl Pn*(e)zn .......................................................................................... (3‘18)
P*(Z.e):"%l] Q"*(B)Z ........................................................................................... (3‘19)
R*(Z~9):n§] Rn*(e)zn ......................................................................................... (320)

Then from the system equations, we have

(6— A + AZ)P*(z2,6)= —S*(8) [P(z,0)— P:(0)z] /z—S*(6) [P(2.0) — Pu(0)]

—S*(e) [R(Z,O)‘RU(O)] +P(Z,0) ................................................ (3_21)
(9_ A+ XZ)Q*(Z,G)Z — [P:(O)‘*‘Ru(O)] V*(9)+Q(Z,0) ............................................ (3.22)
(6— A+ AZ)R*(Z,B): —_ [Qu(()) . U*(6)+R(Z,0) .................................................... (3.23)

From eq.(3.21), (3.22) and (3.23), we have, by letting 6= A4 — Az,

284 — A2) [P(z,0)— Po(0) + R(2.0) — R (z.0)— Ro(0)—P:(0)]
P(z.0)=

Z_S*(,{ — AZ) ......................................................... (324)
Q(Z,O)—_“ [P1(0)+Ru(0)}v*( A _ A Z) .................................................................. (325)
R(Z,O):QU(O)U*( A — A Z) .............................................................................. (326)

From R«(0)=R(0,0) and Q«0)=Q(0,0)., we have

Q(O) — [Px(O) + Rn(O)] V*( A ) ............................................................................ (3‘27)
R(O):QO(O)U*( A ) ........................................................................................ (328)

Then, we have

V*(2)P(0

Qo (0) = l—U*((AA))V(*()A ) .............................................................................. (3_29)
U (A)VH(A)P(0)
Re@=7_0+()v*(2)

Substituting(3.29) and (3.30) into(3.25) and (3.26) yields

P(O)YV*(A — A
Q(Z,O): lﬁ\)/*( E;U*( ,\Z; ............................................................................. (3'31)




PUOVHAIUMA = A2Z) | e
R0 = O o V) (3.32)

Then from eq.(3.24)

_P(0)zS* (A — A2) [V (A — Az)—1+V*(A)U*(2 — 12)—1)]
P(Z,O)— [I_V*( ,{ )U*(A )] [Z_S*(A — A Z)] ...................... (333)

From eq. (3.21), (3.22) and (3.33),

o PORIS* (A — AD)=S* @I [V*(A = 3D =1+ V(U (A = AD=D]
P(z.0)= [A=U*(AV* ()] [o— A+ A2 Z—S*(A — A2)] (3:34)

. _ PO)[V*(A—2az2)—V*(e)]
Q (Z,S)'- [l——U*( 3 )V*(,{)] [6— P Az] ......................................................... (3'35)

. POV A)[U*(A = az)—U*(s)]
R*(z,0)= LU OV O e A Az] s (3.36)

By applying L ‘hospital’s rule, we have

vy o POAESEM+V(OEW)]
P*(LO= "G 4)V= ()] [1— AE(S)] (3-37)

P(O)E(V)

Q*(I,O): l_U*(A)V*(A) ........................................................................... (338)
P.(0)V* E(U
R*(I’O): 1_(&*(,(";3*((/1)) ............................................................................ (339)

Then, from P*(1,0)+Q*(1,0)+R*(1,0)=1, we have

_(=2E®)[-U(A)V*(A)]
PI(O)_ E(V)+V*( i )E(U) ............................................................ (3_40)

The mean system size becomes

L=(d,/dz)V*(1,0)+(d.” dz)Q*(1,0)+ (d./ dz)R*(1,0)

A2 E(S%) A [E(V)+V*(A)E(U?)]

= A E(S)+ 2[1_ 2 E(S)] + 2[E(V)+V*( 2 )E(U)] ..................................... (3.41)

The first two terms are the mean system size of ordinary M/ G,”1 queue and the third term
is the increment of mean system size due to the server vacation policy.

4. Waiting Time Distribution
The LST of waiting time(including the service time) of an arbitrary customer is given .
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WHO)= 12 P(A)[S*E)] + 3 0 @[S* @) + 3 R[S )] S5*0)

=[1—AE(S)]0S*(H)‘ [1-V*(0)] +V*(A)[1=U*(s)]
86— A + AS*(8) [E(V)+V*(1)E(U)]s

_ (1= 2E(S) )sS*(e) | E(V) _1=V*(s)
e— A+ AS*(e) [E(V)+V*(A)EU)  6E(V)
+_ VHAEUL) 1-U*(s) }

EV)+V*(2)E(U) = ¢E(U)

Fuhrmann and Cooper(2] proved that for M,/G,/1 system with one type of vacation, the
waiting time is the sum of two independent random variables: waiting time in the ordinary
M /G /1 queue and the remaining vacation time. We now illustrate that the decomposition
property still works for the queues with mixed types of vacations. We further propose a
method to directly obtain the LST of the waiting time by applying the decomposition
property. Let us rewrite eq.(4.1) as

W6 W1 (6) Ve () oUne(0)] e “)
where
Wraron) = GZAESDS O w3
R w
R ws)

Wwo*(6) is the LST of the waiting time of the ordinary M/G./'1 queue. Vr(s) and Ux* are
the LST’s of the remaining vacation times of the first and second type of vacations respective-
ly. wv and we are the weights that vary depending on the combination of vacations. So
eq.(4.2) tells us that the waiting time is the sum of two random variable: waiting time in the
ordinary M.”G,”1 queue and the convex combination of the two remaining vacation times.
The weights can be interpreted in this way. The mean total vacation duration is given by
£q.(2.5). Out of this, the portion that the vacation of first type takes is E(V)[1—U*(2)V*(2)].
The ratio of this portion to the whole vacation period is given by

_ E(V)
WEEV)VF(R)E(U)

In the similar way, the second weight wu is the contribution by the second type of vacations.
Hence the proportion is give by

e V(DEU)
W TEW+VI(AEU)

In this way we can derive the waiting time distribution(hence the system size distribution,
too) of a queueing system with any mixture of vacations without resorting to the complicated
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system equations. All we need to calculate is the contribution of each type of vacations to the
whole vacation. For example, let us consider the system with vacation sequence {V, V, U, U,

U--|. The mean total vacation period can be esaily obtained and is given by
_ (A=V*(2) )A=U*(2))V*(2)E(V)+(V*(4) FE(U)
E(T)= 1—U*(A)

Hence, contributions of each type of vacation to the whole vacation period become

wom - EVA=V*(2)) (1-U*(4) )V*(2)
TEWA=VH))(A-U (1))VF(2) +(V*(1) YEU)

Wuzl"WV.

Then the LST of this vacation system can be obtained from eq.(4.2)
5. T-policy Revisited

If both types of vacations are of fixed length T, then our system becomes the M./G.” 1
queuc with T-policy introduced by Heyman[3]. Heyman proved that there exist a certain
value of T that optimizes the system under a cost structure. We let the lengths of vacations be
fixed values T: and T. That is, the server scans the system T. time units after the system
becomes empty. If any customer is found, the server begins to serve. If no customers are
found, server scans the system in T: time units and so on until any customers are found. Let h
be the customer holding cost per unit time for each customer and R be the server scanning
cost per scan. Then during the cycle time(i.e. Tv+Ts), the mean number of scans, Ns, is given
by

Ne=(1=V*(A))+2V*(A)1=U*(A))+3V*(D)U*(A)(1=V*( 1))+
———[1+V*(A )]/[I—V*(/{)U*(l)] ................................................................ (5.1)

Hence during a cycle time, total scanning cost becomes
Cs=R[1+V*(X)]/[I—V*(A)U*(A)] ............................................................. (5.2)
Then scanning cost per unit time, Cu, is given by

Co=Cs/ [E(TV)""E(TB)]
:R(l +V*( A \ )(1_ A E(S) )/ [T1+V*( A )Tz] ..................................................... (5‘3)

The customer holding cost becomes hl, where L is given by(3.41) with E(V), E(U), E(V?)
replaced by Ti, T:, T¢, and T+ respectively. Then total cost per unit time is given by

C(le T:)=Cu:hL ........................................................................................... (5.4)

Partial derivatives with respect to Ti, and T: tell us that the system is optimized when T.=T-

_9_



=T. Then the optimal value of T is given by

T*ZEDL'imE(im ..................................................................................... (5.56)

which is the result of Heyman|[3].
6. Summary

We have obtained the server idle probability, the system size distribution and the waiting
time distribution for a mixed-vacation system. The decomposition property was shown to
work for this type of vacation systems too. We have proposed a method that enables one to
directly obtain the system size distribution and the waiting time. This can be accomplished by
calculating the contributions of each vacation to the whole vacation period. We revisited the
T-policy of Heyman and showed that under the same cost structure, the system cost is
minimized when two scanning intervals are the same.
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