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A Study on Periodic Semigroups
By Younki Chae

Let S denote a topological semigroup throughout: that is, S is a Hausdorff
space with a continuous associative multiplication, denoted by juxtaposition.

S is said to be pointwise periodic if and only if for each x&S, «'=x for some
integer p=>2. The least such p will be called the period of x.

S is turned periodic if and only if there is an integer #>>2 such that x" =x for
all x=S. The least such # will be called the period of S.

S is said to be recurrent if and only if x is a limit point of {x"|#=>2} for all
x<S.

Clearly S is pointwise periodic if and only if S is the union of finite groups.
When S is compact, recurrency is equivalent to S being the union of groups
(Cliffordian) [5, 6].

The criteria for S being pointwise periodic and recurrent could be found in
[5,6] as follows:

(1) S is pointwise periodic if and only if for every subset A of S,

A’cA implies A°=A.
(2) A compact S is recurrent if and only if for each compact subset K of S,
K’CK implies K- =K.

Many questions on pointwise periodic semigroups and recurrent semigroups
were raised by A.D. Wallace in [10]. Here are striking results by J. M. Day
[8.:4]

(A) If Sislocally compact totally disconnected pointwise periodic, and x”=x,
then x has an arbitrary small compact open neighborhood V such that V"=V,

(B) If S is compact connected recurrent and x is a cut point of S, then x" =x
for some #>2,

(C) If S is locally compact totally disconnected recurrent, and x"=x, then x
has an arbitrary small compact open neighborhood W such that W" =W,

As indicated in [1] and [2], A pointwise periodic semigroup seems closely
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related to a semilattice. The aim of this paper is to find conditions that a
pointwise periodic semigroup to be a semilattice. Also, various properties of
pointwise periodic semigroups were inrestigated.

An element ¢ of S is called an idempotent if and only if ¢*=e. The set of all
idempotents of S is denoted by E(S). The set of idempotents of a semigroup
may be empty, as in the case for the additive semigroup of positive integers.
However, E(S) is non-empty if S is compact. Moreover, in any topological
semigroup S, E(S) is closed. For e, fEE(S), define e<<f if and only if ef=e
=fe. Then  is a partial order on E and is a closed subspace of Sx<S.

THEOREM 1. Let S be pointwise periodic and let p be the period of x=S. Then

(D E©®)=x""|ze8)

(D) If x'=x, then a=m(p—1)+1 for some posiiive inleger m.

(3) If p—1is a prime number, then ihe period of x(a <p—1) is the same as
the period p of x.

(4) Let » and q be the periods of the elements x and y of S respectively and
lei | be the least common mulliple of p—1 and q—1. If S is commutalive,

. =1
ther (xy) ~=zxI.

PROOF. (1) If p=2, then x =x=x"

“l=E(S). If p>2, then
O L N N N S
and hence :c‘o'"IEE(S).

v [ ] e
Now let yzE(S), i.e., ylzy. Then y&{z, 27, =, z 1] for some z&S with per-

»

. a : 2 a 2a
iod r. Let y=z , 1<a<<r—1. Since y =y, z =z . Then
# r—o a r—o 2a r+a a+1
re=ir Al = S Bl S
But a¢+1<r, and therefore a+1=r, i.e., a=r—1.
(2) Since x“=x, p<a. Let a=m(p—1)+r, where m is a positive integer and
0<r<p—1. By (1), one obtain

o m(p—1) r -1 r
xX=x =x . )x =x‘o X =x

Then p—1+r<2p—1 gives r=1. Hence a=m(p—1) +1,

p—l.—l‘

(3) The period of +"is less than or equal to p since (xa)p= (xp)azx. Suppose

(xM"=x" for some integer # (1<n<p). Then

a p—a nee p—o (n—1Da+1
r=x x =X x =% .

By(2), (n—Da=m(p—1) for some positive integer m. Since p—1is a prime
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number, p—1|n—1 or p—1|a which are both impossible. Therefore p is the
period of .
@ Let I=(p—1Dm=(g—Dn. Then
Gy T Ty L .,

REMARK. In (3), z” may not have period p for all (1<<a<p—1) if p—1 is
not a prime, For example, let p=5. Then (x2)3::xx5:xx:x2, L€ «° has per-
iod 3. In(1), /41 may not be the period of zy. For example, let ZG: [0, 1, ++, 5}
be the semigroup under the multiplication modulo 6. Then Z, is a discrete
pointwise periodic semigroup. In Z o the periods of 0, 1, 2, 3, 4,5 are 2, 2, 3,
2, 2, 3 respectively. The least common multiple of (period of 2)—1 and (period
of 5)—11is 2, i.e., /+1=3. However, 2.5=4 (mod 6) and the period of 4 is 2.

THEOREM 2 Let S be commuiative and pointwise periodic. Define e relalion
<on S iy z=y if and only if xzzxy. T hen

(1) =< i3 o closed partial order on S.

(2) Lix)=(y|ly<x}=E(S)x.

B) If ¢=E(S) and x=S, then xe<x.

@) If 2= and x=y, then ax<by.

PROOF. (1) Let x<<y and let p be the period of x. Then xzzxy. I p>2, z=
P22 p—1 -

fr—

E- 2 1 2 =1 . ..
xr x =x Txy=zx2 ‘y If p=2 x y=xy=x =zx. Conversely, x=x ly implies

2 b= 5 e R = & 4 =1
x =xx y=xy, l.e., 2<<y. Therefore <<y if and only if x=x" Y.
9
1) Since x =xx, x<x, i.e., < is reflexive.

2) Let x=y and y=x and let p and ¢ be periods of x and y respectively. Then
p—1 q—1
x=x 'y and y=y» x, and hence
g—1 g—1_p—1 p—1
y::}l x:y x y:x y:x.
That is, = is anti-symmetric.
3) Let x<y and y<<z. Then xzzxy. y2=yz. and x=xp_1y. Hence
p—1 p—1 2 p—1 2
xz=x yz=x y =@ y=xy=x,
i.e., x<az. Therefore < is transitive, and hence < is a partial order on S.
Now let f,g: SxS—S by f(x, y)=x3 and g(x,y)=xy. Then f and g are con-
tinuous, and
2
< ={l, 9 |x =2y} ={(x, D|f(x, ) =g, )}

is closed since S is a Hausdorff space.



216 Younki Chae

(2) Let y=E(S)x. Then y=ex, ¢’=e. Hence
y=(ex)’=x(ex)=xy, i.e., y<x.
Therefore y=L(x).
Now let y=L(x). Then y<x, i.e., y= yq_lx, where ¢ is the period of y. By
(1) in Theorem 1, y=yq_leE(S)x, and we are done.
(3) Since (xe)’=(xe)x, re<x, "ecE(S).
(4) Let a<b and let c=S. Then a2=ab, and
(ac)2= azcz= abc2= (ac) (be),
i.e., ac<<bc. Now let x<<y. Then ax<<bx<Cby.

REMARK. If S has a zero 0, then 0=x for all x&S since 02=0=0x. If S has
an identity 1, e<1 for every e=E(S) since 32=e=e

THEOREM 3. Let << be the partial order on the commutative pointwise periodic
S defined in Theorem 2. Let m be a positive integer. If xnym, y'", Vs, y=S,
then S is a semilattice.

PROOF. By hypothesis, (xy)2= (xy)ym. Ve, y&=S. The substitution of xp_l.
where p is the period of x, for y gives
xzz(xxp—l)zzx(xp—l)mﬂ=xxp-1

Hence S is a semilattice.

=X.

THEOREM 4. Let S be commutative and pointwise periodic. Then S admils a
partial order < such that xy=x, y, Vx, ye=S
if and only if S is a semilattice.

PROOF. Let x&S. By substituting x, xg. -+, for y in xy<y, one obtain
12322,:32...
Let p be the period of x. Then x>x">x"=x, i.e., 2 =x. Hence S=E(S).
The converse is well known.

COROLLARY. Let S be a commutative pointwise periodic semigroup which is not

a semilattice. Then there is no partial order on S such that xy=x, y, Yy, y=8.

Let E be a quasi-ordered set. Then XCE is said to be convex if and only if
a=<b=c, a, c=X implies b=X.

Let E be a topological space equipped with a quasi-order. The topology of E
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is said to be locally convex if and only if the set of convex neighborhood of
every point of E is a base for the neighborhood system of this point.

LEMMA. Nachbin[7] Every compact partially ordered space is locally convex.

THEOREM 5. Let S be locally compact and recurrent. If S admits a partial
order < such that
y=x, ¥, £ yES.
Then for each open set U containing x=S, xZEU.

PROOF. By hypothesis, we have
12122::32---.
Let V be an open subset of S with compact closure such that xeVCVCU. Since
S is recurrent, ¥’V for some integer p=2. Since V is a compact partially
ordered space, by the above Lemma, V is locally convex. Then
x, eV, <<t

implies Fevay.

THEOREM 6. Let S be pointwise periodic. Then S is periodic if and only if
there is an integer m=2 such that
m n V
xy =x'y, X, y=S.

PROOF. Let p be the period of S. Then p=>2 and
xypzxy=xpy, o y=S.,
Now let x be any element of S and let p be the period of x. Then, by hypo-
thesis,

p—1

p—1l.m m p—1 "
x=xx =x(f ) =x"% =k

Hence S is periodic with period <m.

COROLLARY. A commutative pointwise periodic semigroup S is a semilattice
if and only if
xyzzxgy. Vx, y<=S.
If x and Y are Hausdorff spaces and ¢ : ¥Y—X is a continuous function, then
XxSxY is a topological semigroup under the multiplication defined by
(x, s, ) (u, t, )=, so(y, )¢, v).
This semigroup is called the Rees product of S over X and ¥ with sandwich
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function ¢, and will be denoted by (X, S, ¥] . The Rees product of a topological
group will be called a paragroup. In general, a paragroup fails to be a group.
If ¢ is the constant function such that ¢(y, x)=1, then

x5, N=( 5, N
Hence we have the following two theorems immediately.

THEOREM 7. If S is a pointwise periodic semigroup with 1, then [X, S, Y]

is poiniwise periodic.

THEOREM 8. If S is a recurrent semigroup wilth 1, then [X, S, YLI is

recurrent.

A semigroup S is said to be divisible if and only if for each y&S and #=N,
there exists &S such that x = y.

It is clear that the surmorphic image of a divisible semigroup is divisible, and
that the cartesian product of divisible semigroups is divisible. If S is a com-
mutative finite divisible semigroup, then S is a semilattice.

THEOREM 9. Let S be commuiative and periodic. If S is divisible, then S is
a semilattice.

PROOF. Let p be the period of S. Define a function f: S—S by f(x):xp_l.
Then f(S)CE(S). Since S is divisible, f is surjective. Hence S=E(S).

A Bohr compactification of a topological semigroup S is a pair (8, B) such
that B is a compact semigroup, B: S—B is a continuous homomorphism, and if
g: S—T is a continuous homomorphism of S into a compact semigroup T, then
there exists a unique continuous homomorphism h: B—T such that the diagram:

commutes.

For any topological semigroup S, there exist a unique Bohr compactification
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(8. B) of S up to isomorphism. Moreover, B(S) is a dense subset of B.

THEOREM 10. If S is periodic with period p, then the Bohr compactificalion
of S is also periodic with period < p.

PROOF. Let(3. B) be a Bohr compactification’ of S. Then B(S) is a dense
subsemigroup of B which is periodic with period < p. Let d=B. Then there is
a net [aa} in 8(S) such that aa—+b. By the continuity of the multiplication in
B, a';—*b'j. Then one obtain b =b.

As indicated in (A4), if S is locally compact pointwise periodic and totally
disconnected, cach &S has arbitrary small open neighborhood U such that U=

U, where x =xz.

THEOREM 11. Let S be locally compact and totelly disconnected and lei S’ be
a subsemigroup of S. If S is pointwise periodic and if x&S’, then x has arbitrary
small opeir neighborhood A in S™ such thal ¥ =A, where =1

PROOF. Let x=S8", «=x. If W is an open neighborhood of x in S’, then there
is an open neighborhood U of x in S such that W=U(S". By the property (A4)
on S, there is an open set ¥ in S containing x such that V’=V. Now let A=
S’MV. Then A is an open set in S containing x and

A=S'NV < S'NU=W,
A= nm’ < v c snvea.

Since S’ is also pointwise periodic, A=A
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