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ON THE IDENTITIES OF BOL-MOUFANG TYPE
By A.R.T. Solarin

Abstract: In this work we study properties of five identities of Bol-Moufang
type (1). We establish a necessary and sufficient condition for a loop to be an
RC-loop. A corollary to this is the condition for a Bol loop to be an RC-loop.
Some properties of a generalization of RC-loops are discussed. We also state
the relationship between the supernucleus M(G) of a loop G and the nucleii of
loops which do not have the inverse property. Finally, we give two tables of
non-associative RC-loops of order 16, which are not Bol loops.

1. Introduction

F. Fenyves [4], studied loops with identities of Bol-Moufang type and pointed
out some basic properties of loops satisfying these identities. In this study, we
look at five identities viz:

x yaz= xy.x.(la} y:c z y. xz(lb) yz. x —y.‘x (Ic)

(yx.x)z=}y. xz(ld) yx z=y(x.xz) (le). n
F. Fenyves showed that a loop G satisfies the identity (la) ((1b) or (lc)) if
and only if x2 lies in the left (middle or right) nucleus of G and (1d) or (le)
if and only if «* lies in the middle nucleus of G for all x in G. The classes
satisfying (la), (1b) and (lc) contain loops from virtually all classes satisfying
the Bol-Moufang type identities. We may refer to the identities (la), (1b) and
(1c) as left square (LS-), square (S-) and right square (RS-) identities res-
pectively: in each case, loops satisfying them may be called LS-, S-, RS-loops.
We also refer to (1d) and (1e) as right middle (RM-) and left middle (LM)-
identities, loops satisfying them as RM-loops and LM-loops respectively.
Identities (1a), (1b), (lc) are special cases of a generalization of the associa-
tivity identity viz: xk. yz:xky.z: yxk.f.:y. xkz; yz. xkzy. zxk. where x—»xk is a
mapping of the loop into itself; a loop satisfies any of these identities if and
only if P lies in the left (middle, right) nucleus respectively.
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A loop (G, +) is called a right centre loop (RC-loop) if and only if,

(zy. x)x=2z(yx. x) @
for all x, », 2=G. A loop (G, ) is called a right Bol loop (or Bol loop) if and
only if

(2y. )y=2(yx.y), 3
for all x, v, z=G. RC-loops and Bol loops are right alternative [1], [4]. There
are examples of loops which are both Bol and RC-loops, especially, all the six
Bol loops of order 8 are also RC-loops. A natural question is: what is the
condition on a Bol loop to be an RC-loop? Here we prove a more general
theorem in which case, the condition is given as a corollary. We prove that a
loop is an RC-loop if and only if it is right alternative and the square of its
clements belong to the right nucleus. Since Bol loops are right alternative it
then follows that if the square of every element of a Bol loop belongs to the
right nucleus then it is an RC-loop. Since Bol loops have been extensively
studied by a number of authors including Bol [1], Robinson [5], Solarin and
Sharma [7], [8] we shall concern ourselves more with those RC-loops which
are not Bol loops.

In [3], O. Chein defined supernucleus M (G) of a loop G as set of elements
satisfying the identity (xa.a)y=x(a.ay) for all z, y in G. He then proved that,
a is in M(G) if and only if a is in the nucleus N' of G.We exhibit some pro-
perties of M(G) which is a C-ioop, and state its connection with various nucleii
of loops which do not have the inverse property.

Loops satisfying the identical relations

(x.xy)z=x(x.yx) 4)

(yx. x)z=y(x. x2) 5)
for all z, », z¢G are called left C-loops (LC-loops) and C-loops respectively.
I.C-loops are dual to the RC-loops. In Section 4, we discuss the algebraic
properties of the classes of loops satisfying the identities

. xy)z= . ¥z) ®
(yx. xk)zzy(x. ) (M
(yz.x) A= y(zx. 2 ®

for all x, y, z2=G, where ' is the image of x under some mapping £ of the
loop into itself. Loops satisfying (6), (7) and (8) are called GLC-loops, GC-
loops and GRC-loops respectively.

The reader may consult Bruck [2] for the definitions of the following terms:
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left nucleus N, middle nucleus N, right nucleus Np, nucleus N, centrum C,
Centre Z, left multiplication L(x), right multiplication R(x), left inverse
x)', right inverse x” for x in a loop G. All loops are written multiplicatively.

2. We define the following new propertlel of a loop which are
considered in this section.

DEFINITION 2.1. A loop G satisfies the left (right) square-alternative pro-
perty if x4y=:c2. xgy (yx4=_vx2. xz) for all x, y=G. It satisfies the square
alternative property if it satisfies both left and right square alternative
properties.

DEFINITION 2.2. A loop G satisfies the left (right) square-inverse property
if y"z=xA. xyz( yzx. 2= y7), for all x, y=G. It satisfies the square-inverse preperty
if it satisfies both left and right square-inverse properties.

DFINITION 2.3. A loop G satisfies the left (right)-inverse squared property if
232 9 2 2]
) xy=y(ya~. (x)°=y), for all x, y=G. It satisfies the inverse squared
property if it satisfies both left and right-inverse squared properties.

DEFINITION 2.4. A loop G satisfies the square flexible property if xy"'.x:
2
x.y x, for all x, y=G,

THEOREM 2.1 If G is an RS-loop, then for all x=G,
(1) G has the right square-alternative property;
(i) G has the left square-inverse property;
2.0 0.2 2.4 A2 2.p 2.2
(i) () =@) s () =) ) =&
(iv) G has tee right-inverse squared property;
(2) x” is in the right nucleus Np of G.

PROOF. Let G be an RS- Ioop, satlsfymg the identity
yZ P =y.zx for all z, y, z=G.
(i) Substituting z:x in the RS-identity gives
yx2 .'cz:,'yzfi

for all x, yeG. Hence G has the right square-alternative pmpcrty

_(ii) Substituting y= A?.Jl in the RS—ldcntlty, we obtain z'z.x =z zxq Since
z'z=1, it follows that x —z't zx- for all x, 2=G. Hence G has the left square-
inverse property.
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(iii) In the RS-identity, let y==x, z= %, X= x°, Then x (x ) =x{x (xp) )—
x(:c x 'c) 1, This lmplles that (xp) —(x) Also lety % z x”, then (x) X
=K (-r )= 1:>(x) —(x) Moreover. let = X, 2= (x) then

[+, (212 =2 1D L ==t (D =1

Therefore (ch)'jtz(:cr'))"J .

(iv) In the RS-identity, let x=2", z=x". Then

yxg. (xp)2= ¥, xz(xp)2= Y. xg(xg)'o= .

Also yx*. 2D =ya". (2D, therefore yx°. (+) =y for all x, y&G.
Hence G has the right-inverse squared property.

(v) The RS-identity and the definition of right nucleus

N, =>x"eN, for all 2G.

The LS-identity is dual to the RS-identity. Therefore analogous results to
Theorem 2.1 hold for LS-loops.

THEOREM 2.2. If G is an LS-loop, then for all x=G,
(i) G has the left square-alternative property;

(i) G has the nght sqaare mverse praperlv

Gin) (O’=ED" 1 @O'=GH =D

(tv) G has the left-inverse squared property:

(v) X is in the left nucleus N, of G.

PROOF. The proof is similar to the proof of Theorem 2. 1.

THEOREM 2.3. If G is an s-loop; then for all x=G,
(i) G has the square-alternative property;

(i7) G has the inverse squared property;

(iid) xﬂ=xx.

(iv) G has the square flexibility property

() :c2 is in the middle nucleus of G.

PROOF. Let G be an S- Ioop, satlsfy ing the identity
yx =y % 2 for all %,y zeG.
(i) Substituting y=:. in the S-identity gives
xz=1" xzz, for all x, z&G,
also substituting 2=x gives yxz. = qu. for all x, y=G. Hence G has the
square-alternative property.
(ii) Substituting z=(x2)p in the S-identity gives yxg. (xz)p:y. xg(xz)'a =y; for
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all x, y=G. Also substituting y=(xD" gives (+D% x°2=2: for all z, 2G.
Hence G has the inverse squared propertg.

(iii) Substituting y= xz. z= (x) in the S- ldcntlty gives

(x x')(xp)”—x & G H=x P’
(iv) Substituting z=y in the S-identity gives
yx2.y=y. xzy. for all xr, y=G.

Therefore G satisfies the square flexible property.

(v) The S-identity and the defmltlun of the middle nucleus

N Z}x FN for all x=G

This completes the proof uf 'I heorem 2 3.

COROLLARY 2.1. FEvery finite RS (S, LS)-loop of odd order whose elements
have odd order is a group.

PROOF. If the order of a loop G is odd, then for every y=G there exists
x¢G such that y=xz. since order of y is odd.

(i) If G is an RS-loop, then r'*’eN for all xeG=yeN,, for all y=G.
Therefore N =G, but N is a group. Hencc G is a group. Slmllarly, if G is
an LS (5)- loop. thcn

CEN., (N ) for all x=G, —yEN, (N 3
for all y=G. Thus N_(N”) G but N (N'u) is a group, thereforc G is a group.
This completes the proof of Corollary 2.1.

In the next Theorem we consider the properties of RM-loops. They satisfy

properties similar to those of RC-loops and Bol loops.

THEOREM 2.4, If G is an RM-loop, then for all x, y=G,
(@) G has the right alternative property;
(b) G has the right inverse property;
(¢) G _has the square flexibility property:
) x'=x":
(e) x2 is in the middle nucleus of G;
() @ x"=x""y=xy.5"
(ii) For any integer m, xym. y":xy'"”. where ne Z.

PROOF. Let G be an RM-loop, satisfying the identity
(yx.x)z=y. xzz for all z, y, z=G.
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(a) Substituting z=1 in the RM-identity gives

yxz=yx.x
Hence G has the right alternative property.

(b) Since G is a quasigroup, let y, #&G. Then there exists x=G such that
yx=b. Substituting z=x" in the RM-identity gives (yx. x)x"=yx. Putting yx=0
we obtain bx.x°=b for all x, b&G. Hence G has the right inverse property.

(c) In the RM-identity, letting z=y gives

(yx. x)y=y. xr')y also (yx.x)y=yx.x)y= yxz. y
(right alternative property). Therefore y:rg. y=3. xgy for all x, y=G. Hence G
satisfies the square flexible property.

(d) Since x'r=1, we have x'x.x°=x", but a2 =x" (by right inverse pro-
perty). Therefore xz—xp This proof is general for all right (left) inverse
property loops.

(c) Applymg the right alternative propcrty to the RM-identity, we obtain
yx . z=y. £z for all x, y, z=G. Therefore x CN for all xeG.

(f) (i) We shall consider two cases viz:

(@) neZ”, (b) nsz”.
When =0 (i) reduces to the right inverse property. The case #=1 is trivial.

(a) neZ “. We shall establish this by induction. Assume that (i) holds for
£>1, that is,

B k-1 E—1
Xy =xy JY=x0Y
In particular, puttjng x=1 yields
yk=ykul.y=y.yk_1 for all y=G.
Now xyk~+1 L (yyyk*l)
=(zy.7)y" ' (by RM-identity)
=xy. yk (by induction hypotehsis).
Also xyk. y=(x. ;vyykw 5! y
=((xy. y)ykﬁz)y (by RM-identity)
=(xy. y)y"”I (by induction hypothesis)
=xy. yk
Therefore xyk "1=xy. yk=xyk. y. Therefore (i) holds for 2+1 whenever it holds
for & Hence it holds for all n=Z .

(b) Let k=Z ", then xyH]:xyk.y from (i). Substiting y=y_1 in this equation

gives x(y D =x(y HEy ™

xy =Gy "y Hy=xy"" (by right inverse property)



On the identies of Bol-Moufang type 57

also substituting x=xy and y—y_l m xyk lﬂxy yk gives
xy. (y I)k l*(xy y )(y ) H(xy ) (by right inverse property)
=3zy y‘k_l—xy
Therefore we obtain xy k=xy Lo .y—xy.y—*_l. Since k=Z", —k=Z~. This
completes the proof of (i) for any integer ne Z.-
(ii) The result holds trivially for #=0. For n=1,
O= (.
For any integer #>>1 assume that (ii) holds for any integer m and all x, ycG.
That is

xy. yk=xym+k

Consider xym+k+1 =xy" hik y (by (i)
=(zy". J'k)y (by assumption)
=xy" ! (by (D))

Therefore (ii) holds for 2+1 whenever it holds for 2 Hence (ii) holds for
all .=z for any integer m for all x, y=G. Also replacing m by m—n, gives

m-—n n m
xy .y =zy .

B—n

Therefore Gy "y "-xym.y_"
m—n l m-—n -~ -
(xy Dy T=xy (by right inverse property)
Hence :cy B *xym y ., for all integers #->0, any integer m and all z, y=G.

This completes the proof of (ii) for all integer n=Z.
This completes the proof of Theorem 2.4

COROLLARY 2.2. Every finite RM-loop is power-associative.

PROOF. Letting x=1 in f(ii) gives ym. y" =ym"" for all y=G and integers m
and n. Therefore y generates a cyclic subgroup of G, for all y=G, since G is
finite. Therefore G is power-associative.

THEOREM 2.5. Let G be an RM-loop. Then the following statement are
equivalent:

(#) G is an C-loop;
(i1) G has the left alternalive properiy;
(i1i) G has the inverse property.

PROOF. By Theorems 2 and 4 of Fenyves [4], (i.e. Theorem 4.3 below)
every C-loop G has both left alternative and inverse properties. Therefore
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(i)—> (i) and (ii.

(i) implies (iii) let y=x ' in the RM-identity, we obtain xz=x '.x°z there-
fore

2 L xz= xgl(xgl.xgz) % 2 xz (by (i)
Since x eN mlddle nuc]eus of G, therefore
x i xa= (x ~ x)z "o 1 xz=z for all y, z2G.

Hence G has the left inverse property. Consequently, G has the inverse property.

(iii)= (). Letting y=x_1 in the RM-identity, we obtain

x2=x Hz—x. 12=x(x .x2)=12 (by (iii))

Therefore x.xz=xz for all x, z&G. Substituting this into the RM-identity
yields (yx.x)z=y(x.x2) for all x, y, z=G, which is the C-identity. Hence G is
a C-loop.

This completes the proof of Theorem 2.5.

REMARK. Since any loop G with the property that % isin its left (middle,
right) nucleus for all x=G, is an LS (S, RS)-loop, therefore, all RM-and
[.M-loops are S-loops.

To end this section, we state a theorem connecting Bol loops and RC-loops.

THEOREM 2.6. A loop G is an RC-loop, if and only if it is right alternative
and x is in the right nucleus of G, for all x&G.

PROOF. Let G be a loop. If G is an RC-loop, then it is right alternative and
x EN of G fer all x=G.

\o“ let G be a loop which is right alternative such that x EN of G. 'Ihen
zy.x =2, yx for all x, y, z=G. By right alternative property of G zy.x =
(zy.x)x, zy.x —z(y.r x), for all x, y, 2=G. Therefore (zy.x)x=2zy. =z yx =
z(yx.x) for all 2z, y, x&G, which is the RC-identity. Hence G is an RC-loop.
This completes the proof of Theorem 2.6.

COROLLARY 2.3, A Bol loop G is an RC-loop if and only if xQENp of G for
all x=G.

PROOF. The assertion follows from Theorem 2.6. since every Bol loop is a
right alternative loop.
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3. In this section, we consider some properties of GLC (GRC)-loops.

THEOREM 3.1. If G(.) is a GLC (GRC)-loop, then

(i) G(.) satisfies the left (right) inverse property.

(ii) ¥'=1" for all x=G

(#ii) N, N (N =N )

(iv) L(xk 1:) L(x) L(x) (R(x)R(xJ R(x.x )) for all x=G.

PROOF. (i)a Let x y in (6) then
(x yy)l”:: (v y2)
_ L0y =Gk v 2=2"2 for all y, 226.
Therefore y/'. yz=z for all y, z&G
Hence G(.) satisfies the left inverse property.
()b Let x=2" in (8), then
(yz. zp)xk= y(zzp. xk) = yxk for all y, z&G.
Therefore yz.2°=y for all y, z&G. Hence G(.) satrsfies the right inverse pro-
perty. ) )

(iDa Let z=yp in yk.yz=z. then y"yyp:yp for all y=G implies y"=y'° for all
yeG. ) _ )

(ii)b Let y=2" in yz.z"=y then z'z.2
zeG.

(iii) In a left (right) I.P. loop the left (right) and middle nucleii coincide.
Since in Theorem 3.1 (i) we have shown that G(.) is L(R) L.P. then (ii)
follows.

(iv)a Let y=1 in (6), then (xk. x)z=xk(xz) for all x, z&G. Thus zL(x)L(xk)
—2L(x". x) implies L) L(x")=L(z" %) for all x=G.

(iv)b Let z=1 in (7), then yzx. xk=y(x. xk) for all y, z&=G implies yR(x) R(xk)
=yR(x. xk) implies R(x) R(xk)=R(¥. xﬁ) for all x=G.

#—2* for all 2&G implies 2’=2" for all

THEOREM 3.2. If (G.) is a GLC-loop and :ckEN}‘ for all x=G, then G(.) is
a group.

THEOREM: If (G(.)) is a GRC-loop and :rkEN'p for all x=G, ther G(.) is a
group.
4. LEMMA 4.1. M(G) is a C-loop.

PROOF. By definition of M(G), (xa.@)y=x(a.ay) for all a. x, y, in M(G).
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COROLLARY 4.2. M(G)=G if and only if G is a C-loop. This corollary
appears interesting in the light of corollary 1 of 0. Chein [3]. We shall return
to it shortly, (corollary 4.3).

Since M(G) is a C-loop contained in G, we may refer to il as the C-loop part
of G.

THEOREM 4.3. If G is a C-loop, then

(a) G has the inverse property

(b) G is both left and right alternative

(c) X is in the nucleus N of G. for all x in G.

PROOF. Follows from Theorems 2 and 4 of F. Fenyves [4].

The next theorem gives the connection between C-loops and other di-associa-
tive loops. At this point we like to remark that the condition that a’ belong
to the nucleus of G is not necessary in O. Chein's lemma in [3], xa"=xa.q
and azy:a. ay are left and right alternative properties (Theorem 4.3).

THEOREM 4°4. A di-associative loop G is a C-loop if and only if & is in the
nucleus N of G, for all x in G.

PROOF. Suppose G is dl -associative loop such that + s in N for all % in G,
then (yx.x)z=(yx )z—y(x z) y(x.x2) for all y,z in G. Therefore G is a C-loop.

COROLLARY 4.1. A Moufang loop G is a C-loop if and only if X is in the
nucleus N of G for all x in G.

PROOF. Immediate from theorem 4.4 since a Moufang loop has the di-asso-
ciativity property.

This corollary 4.5 with corollary 1 of 0. Chein [1], indicate that every
MB—loop is a C-loop, and there is no contradiction since every extra loop is a
C-loop [4].

The analogous of theorem 4.4 hold for RC-, LC-loops [4] viz: A right
(left)-inverse property loop G is an RC, (LC)-loop if and only if % is in the
right (left) nucleus Np(NR) of G, for all x in G.

THEOREM 4.5. If G is a right (left)-inverse property loop then Nﬂ (NS
M(G).
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PROOF. If G is a right inverse property loop and & is in N,,:N,u- (xa.ady=
xa.ay=x(a.ay), therefore ¢ is in M (G). Similar argument holds for left inverse
property loop.

We can define RC-, LC-loop parts of a loop G as sets of elements which
satisfy the RC-, LC-identities, denoted by .RC(G), LC(G) respetively, then
M(G)=RC(G)NLC(G).
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Table 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 1 10 13 12 15 14 9 16 11
3 4 5 6 7 8 1 2 11 12 13 14 15 16 9 10
4 5 6 7 8 1 2 3 12 15 14 9 16 11 10 13
5 6 7 3 1 2 3 4 13- 14 15 16 9 10 11 12
6 7 8 1 2 3 4 5 14 9 16 11 10 13 12 15
7 8 i 2 3 4 5] 6 15 16 9 10 11 12 13 14
8 1 2 3 4 5 6 7 16 11 100 13 12 15 14 9
9 10 11 12 13 14 15 16 3 8 5 2 T 4 1 6
10 11 12 13 14 15 16 9 4 3 6 b 8 7 2 1
11 12 13 14 15 16 9 10 5 2 Y 4 1 6 3 8
12 13 14 15 16 9 10 11 6 5 8 7 2 1 4 3
13 14 15 16 9 10 11 12 7 4 1 6 3 8 5 2
14 15 16 9 10 11 12 13 3 7 2 1 4 3 6 5
15 16 9 10 11 12 13 14 . 6 3 8 5 2 i 4
16 9 10 11 12 13 14 15 2 1 4 3 6 5 8 7
Table 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 1 12 9 14 11 16 13 10 15
3 4 5 6 i 8 2| 2 11 12 13 14 15 16 9 10
4 5 6 7 8 1 2 3 14 11 16 13 10 15 12 9
b 6 7 8 9 2 3 4 13 14 15 16 9 10 11 12
6 7 8 1 2 3 4 5§ 16 13 10 16 12 9 14 1
7 8 | 2 3 4 5 6 15 16 9 10 11 12 13 14
8 1 2 3 4 5 6 7 10 15 12 9 14 11 16 13
9 10 11 12 13 14 15 16 3 4 b 6 7 8 1 2
10 11 12 13 14 15 16 9 2 3 4 b 6 7 8 1
11 12 13 14 15 16 9 10 5 6 7 8 1 2 3 4
12 13 14 15 16 9 10 11 4 51 6 7 8 1 2 3
13 14 15 16 9 10 11 12 T 8 1 2 3 4 5 6
14 15 16 9 10 1 12 13 6 7 8 1 2 3 4 5]
15 16 9 10 11 12 13 14 1 2 3 4 5 6 T 8
16 9 10 11 12 13 14 15 8 1 2 3 4 5 6 7

The two tables above were tested on the computer and were found to satisfy
the RC-identity but not Bol identity. Their commutative patterns reveal that
they are non-isomorphic.



