A characterization of Banach spaces with the weak Radon-Nikodym property

by Sung Jin Cho

Pusan National Institute of Technology, Pusan, Korea

1. Introduction

In 1974 Huff, Davis, Phelps [2] proved the following theorem.

Theorem (Huff-Davis-Phelps): A Banach space containing a bounded nondentable set is a Banach space without the Radon-Nikodym property.

In this paper, we will extend this result and obtain the following theorem.

Theorem 3.4: A Banach space containing a bounded non-weak-norm-one dentable set is a Banach space without the weak Radon-Nikodym property.

2. Preliminaries

Throughout this paper x is a Banach space with dual x^* . The closed unit ball in x will be denoted by B_x . ([0, 1], $\sum_{i} \mu$) i denote the Lebesgue measure space on [0, 1].

Definition 2.1: Let $T: L_1(\mu) \rightarrow x$ be a bounded linear operator. The operator T is said to be a Dunford-Pettis operator if T takes weakly compact sets into norm compact sets.

Definition 2.2: Let (Ω, \sum, μ) be a finite measure space and $T: L_1(\mu) \rightarrow x$ be a bounded linear operator. T is said to be Pettis representable if there exists a Pettis integrable function $g: \Omega \rightarrow x$ such that

$$x*T(f) = \int_{\Omega} fx*g d\mu$$

for every $f \in L_1(\mu)$ and for all $x^* \in X^*$, g is called the Pettis kernel of T. The following theorem is due to [5].

Theorem 2.3(Stegall): Let $T: L_1[0, 1] \rightarrow X$ be Pettis representable. Then T is a Dunford-Pettis operator.

Definition 2.4: Let \sum_0 be a sub σ -algebre of \sum and $f \in P(\mu, X)$. Suppose $g \in P(\mu, X)$ is such that g is weakly measurable with respect to \sum_0 and $(P) - \int_A g d\mu = (P) - \int_A f d\mu$ for all $A \in \sum_0$, then g is the Pettis conditional expectation of f with respect to \sum_0 , denoted $g = (P) - E(f|\sum_0)$. Also if f, $g \in L_1(\mu, X)$, with g strongly measurable with respect to \sum_0 and $\int_A g d\mu = \int_A f d\mu$ for all $A \in \sum_0$, then g is called the (Bochner) conditional expectation of f with respect to \sum_0 , usually denoted $g = E(f|\sum_0)$.

. Definition 2.5: For $g \in P(\mu, X)$ we define its Pettis norm

 $\| g \| = \sup \{ \int |x^*g| d\mu : x^* \in X^*, \| x^* \| \le 1 \}.$

A martingale (g_n) in $P(\mu, X)$ is called Pettis Cauchy if (g_n) is a Cauchy sequence for the Pettis norm,

The following theorem due to several authors allows the pontential to use martingales to study Dunford-pettis operators on $L_1[0, 1]$ in much the same way that martingales are used to study representable operators on $L_1[0, 1]$.

Theorem 2.6: An operator $T: L_1[0, 1] \rightarrow X$ is a Dunford-Pettis operator if and only if the martingale (ξ_n, Σ_n) associated with T is Cauchy in the Pettis norm; i. e.

$$\lim_{n, m \mid x^* \mid \le 1} \int |x^* \xi_n - x^*_m| \ d\mu = 0, \ x^* \in X^*.$$

Definition 2.7: A subset D of a Banach space is not dentable if there exists an $\varepsilon > 0$ such that, for each $x \in D$, $x \in \overline{co}(D \setminus B_{\varepsilon}(x))$ where $B_{\varepsilon}(x) = \{y : ||y-x|| < \varepsilon\}$ and $\overline{co}(D \setminus B_{\varepsilon}(x))$ is the closed convex hull of $(D \setminus B^{\varepsilon}(x))$.

3. Weak-norm-one dentable sets and the weak Radon-Nikodym property

In this section, we get a characterization of Banach spaces with the weak Radon-Nikodym property.

Definition 3.1: A subset D of a Banach space X is not weak-norm-one dentable if there is an $\epsilon > 0$ such that for each finite subset F of D, there is $x *_F \in X *$ with $||x *_F|| = 1$ with the property that $x \in F \Rightarrow x \in \overline{co}(D \cap \{y \in X : |x *_F (x - y)| \ge \epsilon\})$. Naturally a non-weak-norm-one dentable set is not dentable, i.e., dentability implies weak-norm-one dentability.

The following Lemma is needed to our main theorem.

Lemma 3.2: Let X be a Banach space containing a bounded non-weak-norm-one dentable set D. Choose $\varepsilon > 0$ to satisfy the criterion of Definition 3.1. Then there exists a sequence of finite partitions $\sigma \pi_n$ of [0, 1) into half-open intervals and a sequence of (f_n) of finitely valued functions on [0, 1) such that

- (a) Each f_n has the form $f_n = \sum_{E \in \pi_n} x_E x_E$ where $x_E \in D$ for all $E \in \pi_n$.
- (b) $||| f_n f_{n+1}||| \ge \varepsilon$ for all n.
- (c) $\| \int_{\mathbb{E}} (f_{\mathbf{m}} f_{\mathbf{n}}) d\mu \| \langle \mu(E) / 2^{\mathbf{n}} \text{ for all } E \in \pi_{\mathbf{n}} \text{ and all } m \geq n.$

Proof: To construct (f_n) and (π_n) , choose \bar{x} arbitrarily in D and set $f_1=\bar{X}$ \bar{X} [0,1) and $\pi_1=\{[0,1]\}$. Suppose π_n and $f_n=\sum_{f\in\pi_n}x_Ex_F$ have been defined with $x_E\in D$ for all $E\in\pi_n$ and with each $E\in\pi_n$ a half-open interval. Choose k and $0=c_0< c_1< \cdots < c_k=1$ (depending on n) so that $\pi_n=\{[c_{j-1},c_j]:1\leq j\leq k\}$. Fix j, set $E(=E_j)=[c_{j-1},c_j)$ and let x_E be the value of f_n on E. Now by assumption we may choose elements x_1,\cdots,x_m in D and positive numbers $\lambda_1,\cdots,\lambda_m$ with $|x^*(x_1)-x^*(x_2)|\geq \varepsilon$ for all $i=1,\cdots,m$ and for some $x^*\in X^*$ with $|x^*|=1$

 $\begin{array}{l} 1 \text{ and } \| \ x_E - \sum\limits_{i=1}^m \ \lambda_i x_i \ \| < \frac{1}{2^{n+1}} \ . \ \text{Set } d_0 = c_{j-1} \ \text{and define } d_i, \ \cdots, \ d_m \ \text{successively by } d_i - d_{i-1} = \lambda_i (c_{j-1} - c_{j-1}). \end{array}$ It follows that $c_{j-1} = d_0 < d_i < \cdots < d_m = c_j. \ \text{Now } \pi_{n+1} = \{ [d_{i-1}, \ d_i) : 1 \leq i \leq m \}. \ \text{Again fixing }$ j, define f_{n+1} on E by $f_{n+1} \chi_E = \sum\limits_{i=1}^m \ \sum\limits_{i=1}^{k_{i} x_i} [d_{i-1}, \ d_i]. \ \text{Do this for every } E \in \pi_n \ \text{and note that } \| \ | f_n - f_{n+1} \| \ge \varepsilon. \ \text{Indeed, for each } E \in \pi_n \ \text{and for all } x^* \in X^* \ \text{with } \| \ x^* \| \le 1, \ \int_E | \ x^* f_n(t) - x^* f_{n+1}(t) | \ d\mu(t) = \sum\limits_{i=1}^m \ \int_E | \ x^* (x_E) - x^* (x_i) | \ \mu(E_i \cap [d_{i-1}, \ d_i)).$ Thus

$$|||f_{n}-f_{n+i}||| = \sup \int_{[0,1]} |x^{*}f_{n}-x^{*}f_{n+i}| d\mu = \sup \sum_{j=1}^{k} \int_{E^{j}} |x^{*}f_{n}-x^{*}f_{n+i}| d\mu$$

$$||||| x^{*}|| \leq 1 \qquad |||| x^{*}|| \leq 1$$

$$= \sup \sum_{j=1}^{k} \sum_{j=1}^{m} |x^{*}(x_{E})-x^{*}(x_{I})| \mu(E_{I}\cap[d_{I-1}, d_{I}))$$

$$||||||||| \leq 1$$

$$| | \int_{E} (f_{n} - f_{n+1}) d\mu | | = | | x_{E} - \sum_{i=1}^{m} \lambda_{i} x_{i} | | \mu(E) < \frac{\mu(E)}{2^{n+1}}$$

This establishes statement (c) and completes the proof.

We need the following Theorem to our main theorem.

Theorem 3.3: Let X be a Banach space containing a bounded non-weak-norm-one dentable set D. Then there is a non-Pettis Cauchy martingale with values in D.

Proof: By the above Lemma(c), we see that $F(E) = \lim_{n} \int_{E} f_n d\mu$ exists for all $E \in \bigcup_{n} \pi_n$. Write $g_n = \sum_{E \in \pi_n} \frac{F(E)}{\mu(E)} \chi_E(0/0)$.

If \sum_n be the σ -algebra generated by π_n , then (g_n, \sum_n) is a martingale in $L_1([0, 1), X)$. Moreover since D is bounded (g_n, \sum_n) is a uniformly bounded martingale. Now for each $x^* \in X^*$ with $||x^*|| \le 1$, $\int_{[0,1)} |x^*f_n - x^*g_n| d\mu$ $= \sum_{E \in \pi_n} |x^*(x_E)\mu(E) - x^*F(E)| \le \sum_{E \in \pi_n} |x_E\mu(E) - F(E)|$ $= \lim_{m} \sum_{E \in \pi_n} \int_{[0,1]} |f_n - f_m| d\mu \le \sum_{E \in \pi_n} \frac{\mu(E)}{2^n} = \frac{1}{2^n}.$

Thus $|||f_n-g_n||| \to 0$ as $n\to\infty$ i.e. (f_n-g_n) is a Pettis Cauchy sequence in $L_1([0, 1], X)$. Glancing at (b), we see that (f_n) is not Pettis Cauchy.

Thus(gn) is not Pettis Cauchy and completes the proof.

The following theorem is the main theorem of this section.

Theorem 3.4:A Banach space X containing a bounded non-weak-norm-one dentable set is a Banach space without the weak Radon-Nikodym property.

Proof: Let (g_n) be the martingale in the above theorem, and let $T: L_1[0, 1) \rightarrow X$ be the associated bounded linear operator. Then by the theorem 2.6. T is not Dunford-Pettis and therefore T is not Pettis representable by the theorem 2.3. Hence X does not have the weak Radon-Nikodym property. This completes the proof.

References

- 1. J. Bourgain, Martingales in conjugate Banach spaces (unpublished).
- 2. J. Diestel and J.J. Uhl, Jr., Vector Measures, Math surveys 15, Amer. Math. Soc. Providence (1977).
- 3. N. Dunford and J.T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- 4. L.H. Riddle, Weak Radon-Nikodym sets in dual Banach spaces, Ph.D. Thesis, University of Illinois, 1982.
- 5. J.J. Uhl, Jr., Pettis Representability (unpublished).
- 6. Walter Schachermayer, Operators from L_1 to Banach spaces and Subsets of L_{∞} (reprint).