A Study On The Hypersurface Of *g-SEXn(*)

Song Ho Han, Phil Ung Chung Kanaweon National University, Chuncheon, Korea

I. Generalized n-dimensional *g-manifold x_n

Let x_n be an n-dimensional generalized Riemannian space referred to be a real coordinate system x^v , which obeys coordinate transformation $x^v \leftrightarrow x^{v'}$ for which

(1—1)
$$\operatorname{Det}(\frac{\partial \chi'}{\partial \chi}) = 0.$$

The space x_n is endowed with a general real nonsymmetric tensor $g_{\lambda\mu}$ which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $h_{\lambda\mu}$:

$$(1-2) \qquad g_{\lambda\mu} h_{\lambda\mu} + k_{\lambda\mu} (****)$$

where

$$(1-3) \qquad \operatorname{Det}(g_{\lambda\mu}) = 0, \operatorname{Det}(h_{\lambda\mu}) = 0.$$

The algebraic structure is imprsed on x_n by the basic real tensor ${}^*g^{\lambda\mu}$ defined by

$$(1-4) g_{\lambda\mu}^* g^{\lambda\nu} = g_{\lambda\mu}^* g^{\nu\lambda} = \delta^{V}_{\mu}$$

in virtue of (1-3). It may also split into its symmetric part *h* and skew-symmetric part *k*;

$$(1-5) *g^{\lambda \nu} = *h^{\lambda \mu} + *k^{\lambda \nu}.$$

Since $Det(*h^{\lambda\nu} = 0$, we may define a unique tensor * $h_{\lambda\mu}$, by

$$(1-6) *h_{\lambda\mu_i} *h^{\lambda\nu} = \sigma^{\nu}_{\mu_i}$$

which together with * h_{x_n} will serve for raising and / or lowering indices of all tensors defined in x_n in the usual manner.

The space x_n is assumed to be connected by a general real connection $\Gamma_{\lambda\mu}^{\nu}$ with the following transformation rule;

(1-7)
$$\Gamma^{\nu'}_{\nu'\nu'} = \frac{\alpha \chi^{\nu'}}{\alpha \gamma^{\alpha}} \left(\frac{\alpha \chi^{\beta}}{\alpha \gamma^{\lambda'}} \frac{\alpha \chi^{\gamma}}{\alpha \gamma^{\nu'}} \right) \Gamma^{\alpha\beta\gamma} + \frac{\alpha^2 \chi^{\alpha}}{\alpha \gamma^{\lambda'} \alpha \gamma^{\mu'}} \right).$$

(*) 이 논문은 1987년도 문교부 학술연구조성비 지원에 의하여 연구되었음

(***). Throuhout the present paper, Geek indices are used for the tensors in x_n and take the values 1, 2,..., n, while Roman indices are used for the components of tensors in a hypersurface x_{n-1} of x_n and take the values 1, 2, ..., x_n . They both follow the summation convention.

II. n-dimensional *g-SEmanifold x_n

A connection $\Gamma_{\lambda \mu}^{\nu}$ is said to be Einstein if it satisfies the Einstein equations;

(2-1)
$$D_{\mathbf{w}}^{*}\mathbf{g}^{\lambda\mu} = -2 S_{\mathbf{w}_{\alpha}}^{\mu *}\mathbf{g}^{\lambda\alpha}$$

which is equivalent to the system of equations

$$(2-2) D_{\mathbf{w}} \mathbf{g}_{\lambda \mu} = 2 S_{\mathbf{w}_{\mu}}^{\mathbf{x}} \mathbf{g}_{\lambda \mu}$$

where $s_{\lambda\mu}^{}$ is the torsion tensor of $\Gamma_{\lambda\mu}^{}$, and $D_{\mathbf{w}}$ is symbolic vector of the covarient derivative with respect to $\Gamma_{\lambda\mu}^{}$.

A connection $\Gamma_{\lambda\mu}^{-}$ is said to be semi-symmetric if its torsion tensor $S_{\lambda\mu}^{-}$ is of the form (2-3) $S_{\lambda\mu}^{-} = 2 \int_{[\lambda \times \mu]}^{\nu} for \text{ an arbitrary vector } \mathbf{X}_{\lambda}$.

The connection which is both semi-symmetric and Einstein is called a SE-connection. An n-dimensional *g-SE manifold (*g-SEX_n) is a space x_n on which the differential geometric structure is imposed by * $g_{\lambda\mu}$ through a SE-connection.

III. The SE-connection $\Gamma_{\lambda_n}^*$ * $g-SEX_n$

We introduce the following abbreviation for any real vector y;

(3-1)
$$y_{\lambda}^{(p)} = {}^{(p)*}k_{\lambda}^{\alpha}y_{\alpha}, (p=0,1,\cdots).$$

We need the symmetric real tensor

(3-2)
$$c_{\lambda\mu}^{\nu} = {}^{(1-n)*}h_{\lambda\mu} + {}^{(2)*}k_{\lambda\mu}$$

which is of rank n [see 3.], so that there exists a unique inverse tensor $D^{\lambda\nu}=D^{\nu\lambda}$ satisfying

$$(3-3) c_{\lambda \mu} D^{\lambda \nu} = \delta^{\nu}_{\mu}$$

In the next we state two theorems, proofs of which are given in [3].

Theorem (3.1) If there exists a SE-connection $\Gamma_{\lambda\mu}$, it must be of the form

(3-4) $\Gamma^{\nu}_{\lambda\mu} * \{^{\nu}_{\lambda\mu}\} + 2\delta^{\nu}_{[\lambda} x_{\mu]} - *h_{\lambda\mu} x^{\mu}$ For a vector x, where $* \{^{\nu}_{\lambda\mu}\}$ are the Christoffel symbols defined by $*h_{\lambda\mu}$.

Theorem 3.2. There exists a unique SE-connection $*\{^{\nu}_{\lambda\mu}\}$ $\Gamma^{\nu}_{\lambda\mu}$ if and only if there is a vector x_{λ} such that

(3-5)
$$V_{\mathbf{w}}^* k_{\lambda \mu} = 2 * h_{w | \lambda} x_{\mu |} + 2 * K_{w | \mu} * k_{\lambda |} \alpha x_{\alpha}.$$

The vector x_{λ} satisfying (3-5) is unique and may be given by

$$(3-6) \qquad \overset{\lambda}{x}_{\lambda} = D^{\alpha}_{\ \lambda} V_{\beta}^{\ *} k^{\beta}_{\ \alpha}$$

Where v_w is the symbolic vector of the covarient derivative with respect to ${}^*{}\{{}^{\nu}_{\lambda\mu}\}$.

IV. Geometry on a hypersurface in *g-SEX_n

Let a hypersurface X_{n-1} be embedded in a general X_n . Then X_{n-1} may be given by real parametric equations

(4-1)
$$x^{\alpha} = x^{\alpha} (y^1, y^2, \dots, y^{n-1})$$

provided the matrix (B_i^{α}) where $B_i^{\alpha} = \frac{\alpha x^d}{\partial y^l}$, is assumed to be of rank n—1 in order to exclude singular points. Let the metric for x_n and x_{n-1} be given by ${}^*h_{\alpha\beta} dx^{\alpha} dx^{\beta}$ and ${}^*h_{ij} dy^i dy^j$ respectively. Then we have

(4-2)
$${}^{*}h_{ij} = {}^{*}h_{\alpha\beta} \frac{\partial X^{a}}{\partial y^{i}}, \frac{\partial X^{\beta}}{\partial y^{j}}, = {}^{*}h_{\alpha\beta} \beta^{\alpha}_{i} \beta^{\beta}_{j}.$$

Since the rank of β^{α} is n—l, so is the matrix (h_{ij}) . Hence we may define a unique tensor *hik by

* h_i * $h^{ik} = \sigma^k$ which together with * h^{ij} will serve for raising and / or lowering (4-3)indices of the tensors in X_{n-1} in the usual manner.

Now we need the quantities B^{i}_{α} and B^{σ}_{β} defined by

$$(4-4) B_{\alpha}^{i} = {^*h}^{ij} {^*h}_{\alpha\beta} B_{\beta}^{\alpha}, B_{i}^{\alpha} = B_{i}^{\alpha} B_{\beta}^{i}.$$

Definition 4.1 If $T_{j...}^{i...}$ are the components of a tensor in x_n , the components of induced tensor on Xn-1 derived form it are defined by

$$(4-5) T_{j...}^{i...} = T_{\beta...}^{\alpha...} B_{\alpha}^{i} \cdots B_{j}^{\beta} \cdots$$

Definition 4.2 If $\Gamma_{\lambda_n}^{\nu}$ is a connection on \mathbf{x}_n the connection defined by

$$(4-6) \qquad \Gamma^{k}_{ij} = B^{k}_{r} (B^{r}_{ij} + \Gamma^{r}_{\alpha\beta} B^{\alpha}_{i} B^{\beta}_{j}),$$

where $B_{ij}^{\alpha}=\frac{\partial^{z}X^{\alpha}}{\partial y^{l}\partial y^{j}}$, is called the induced connection on x_{n-1} derived from $\Gamma_{\alpha\beta}^{r}$ on x_{n} .

Theorem 4.3 The induced connection Γ_{ii}^{k} on X_{n-1} derived form a SE-connection $\Gamma_{\alpha\beta}^{r}$ on xn is of the from

$$(4-7) \Gamma_{ij}^{k} = {}^{*}\left\{\begin{smallmatrix}k\\ij\end{smallmatrix}\right\} + 2 \delta_{ii}^{k} - 2{}^{*}h_{ij}^{(i)}\mathbf{X}^{k},$$

where * $\begin{Bmatrix} k \\ ii \end{Bmatrix}$ are the induced Christoffel symbols on \mathbf{x}_{n-1} and the \mathbf{x}_{j} is the induced vector of that determining the SE-connection on xn.

Proof. Substituting from (3-3) in (4-6), we obtain

$$\Gamma^{k}_{ij} = B^{k}_{r} (B^{r}_{ij} + {*} \{ {r}_{\alpha\beta} \} B^{\alpha}_{i} B^{\beta}_{j}) + 2\delta^{r}_{[\alpha} \mathbf{x}_{\beta]} B^{\alpha}_{i} B^{\beta}_{j} B^{k}_{r}$$

$$+ 2 {*} h_{\alpha\beta} {\overset{(1)}{\mathbf{x}}} {^{r}} B^{\alpha}_{i} B^{\beta}_{j} B^{k}_{\alpha}.$$

Making use of (4-5), (4-6), we have (4-7).

Theorem 4.4 The induced connection Γ^k on x_{n-1} derived from a SE-connection on x_n is a semi-symmetric. That is,

(4-8) $S_{ij}^{k} = 2\delta_{IiXjJ}^{k}$. Proof. It is easily verified from (2-3)and (4-5).

References

- 1. K.T. Chung, Einstein's connection in terms of *g. Nuovo Cimento, (X) 27, 1963, pp 1297-1324
- 2. K.T. Chung, A study on the SE-Hypersurface of an n-dimensional SE-manifold., Jour. of NSRI, Vol. 15, 1985, pp. 11-21
- 3. P.U. Chung, A study on the SE-connection and its curvature tensor in *g-SEX_n,ph.D. thesis, yonsei Univ., 1987.
- 4. V. Hlavaty, Geometry of Einstein's unified field theory, Noorrdhoop Ltd., 1957.