Kinetics and Mechanism for Aquation of $[Co(en)_2Cl_2]^+$ in the $Hg^{2+}$ Aqueous Solution

$Hg^{2+}$수용액에서 $[Co(en)_2Cl_2]^+$의 아쿠아 반응속도론과 메카니즘

  • 박병각 (嶺南大學校 理科大學 化學科) ;
  • 임주상 (嶺南大學校 理科大學 化學科) ;
  • 성낙정 (嶺南大學校 理科大學 化學科) ;
  • 이일봉 (嶺南大學校 理科大學 化學科) ;
  • 김광진 (嶺南大學校 理科大學 化學科) ;
  • 강성구 (嶺南大學校 理科大學 化學科)
  • Published : 1988.08.20

Abstract

An experimental investigation is made to determine the mechanism of the aquation of $[Co(en)_2Cl_2]^+$ in $Hg^{2+}$ aqueous solution. The progress of reaction is followed UV/vis-spectrophotometrically by a measurment of the absorbance at a specific wavelength of Co(III) complex as a function of time. The aquation of cis-$[Co(en)_2Cl_2]^+$ and trans-$[Co(en)_2Cl_2]^+$ has been found to be first order and second order with respect to the concentration of $Hg^{2+}$ catalyst, respectively. It has been found that the reaction rate for aquation of the trans-form is faster than that of cis-form, and that the product of either cis-form or trans-form is always in the mixture ratio of 97 % to 3 %. Plausible reaction mechanism is proposed for the reaction system on the basis of kinetic data and activation parameters. Theoretical rate equation derived from the proposed mechanism is consistent with the observed one.

$Hg^{2+}$수용액내에서 $[Co(en)_2Cl_2]^+$의 Cl이 $H_2O$로 치환되는 속도를 UV/vis 분광광도계로 측정하여$Hg^{2+}$를 고려했을때의 속도식을 결정하고, 촉매가 관여한 타당한 반응메카니즘을 제안하였다. 그리고 생성물에서 분리 할 수 없는 cis-형과 trans-형이 생성될 때 이들 이성질체의 비율계산식을 만들고 이식에 의하여 이들 이성질체의 비율을 결정하였다. 본 연구에서 $Hg^{2+}$에 대한 반응차수는 cis-$[Co(en)_2Cl_2]^+$경우 1차이고 trans-$[Co(en)_2Cl_2]^+$경우 2차이다. 그리고 cis형 보다는 trans-형의 경우 더 빠른 반응으로 나타났고 생성물은 cis-형이 약 97%이고 trans-형이 약 3%정도 생성되었다. 이러한 속도자료와 활성화파라메타로 부터 본 반응계가 Id 메카니즘으로 반응이 진행되는 타당한 반응메카니즘을 제안하였다.

Keywords

References

  1. J. Chem. Soc. v.A R. D. Gillard
  2. Inorg. Chem. v.8 W.E. Jones;R.B. Jordan;T.W. Swaddle
  3. Inorg. Chem. v.92 T.P. Dasgupta;G.M. Harris
  4. Inorg. Chem. v.92 V.S. Sastri;G.M. Harris
  5. Inorg. Chem. v.93 T.P. Dasgupta;G.M. Harris
  6. Bull. Chem. Soc. Jpn. v.55 Y. Kitamura
  7. J. Chem. Soc. R. Dyke;W.O.E. Higginson
  8. Aust. J. Chem. v.17 A. M. Sargeson
  9. Inorg. Chem. v.6 D.A. Buckingham;I.I. Olsen;A.M. Sargeson;H. Strapa
  10. J. Am. Chem. Soc. v.90 D.A. Buckingham;I.I. Olsen;A.M. Sargeson
  11. Inorg. Chem. v.16 D.A. Buckingham;P. Morris;A.M. Sargeson;A. Zanella
  12. Inorg. Chem. v.7 C. Bifano;R.G. Linck
  13. J. Am. Chem. Soc. v.91 H. Morawetz;B. Vogel
  14. Inorg. Chem. v.4 J.P. Candlin;J. Halpern
  15. Inorg. Chem. v.5 J.M. Espenson;S.R. Hubbard
  16. Inorg. Chem. v.9 J.P. Birk
  17. Inorg. Chem. v.10 L.C. Falk;R.G. Linck
  18. J.Chem. Soc. (Dalton) M.J. Blandmer;J. Burgess;R.I. Hains
  19. J. Inorg. Nuclei. Chem. v.43 M.J. Blandmer;J.L. Armstrong;J. Burgess;A. Chem
  20. Inorg. Chem. v.17 W.G. Jackson;A.M. Sargeson
  21. Inorg. Chem. v.23 L.G. Vanquickenborne;K. Pierloot
  22. Inorg. Chem. v.15 M.L. Tobe;C.K. Williams.
  23. J. Chem. Soc. v.75 F. Basolo;B.D. Stone;R.G. Person
  24. J. Kor. Chem. Soc. v.30 B.K. Park;J.W. Lee;J.S. Lim
  25. Inorganic Synthesis v.II H.S. Booth(etc.)
  26. Method of Quantitive Inorganic Analysis K. Kodama
  27. J. Chem. Soc. v.A S.C. Chan;S.F. Chan
  28. Technique of Organic Chemistry v.VIII R. Livingston
  29. 觸媒學會編 觸媒反應速度論 慶伊富長
  30. Adv. Phys. Org. Chem. v.5 G. Kohnstam
  31. Inorganic Electronic Spectroscopy A.B.P. Lever
  32. Inorg. Chem. v.7 J.P. Birk;J.H. Espenson
  33. J. Amer. Chem. Soc. v.79 F.A. Posey;H. Taube
  34. Inorg. Chem. v.22 W.L. Reynold;M. Glavas;E. Dzelilovic
  35. The Study of kinetics and Mechanism of Reaction of Transition Metal Complexes R.G. Wilkins