Preparation and Comparison of Proteus mirabilis and Citrobacter freundii Bacterial Electrodes for the Determination of Cytosine

Cytosine 정량을 위한 Proteus mirabilis와 Citrobacter freundii 박테리아전극의 개발과 그 비교

  • Gwon Shik Ihn (Department of Chemistry, College of Natural Science, Keimyung University) ;
  • Bong Weon Kim (Department of Chemistry, College of Natural Science, Keimyung University)
  • 인권식 (계명대학교 자연과학대학 화학과) ;
  • 김봉원 (계명대학교 자연과학대학 화학과)
  • Published : 1988.08.20

Abstract

The bio-electrode for cytosine has been constructed by immobilizing Proteus mirabilis and Citrobacter freundii on an ammonia gas-sensor. Bacteria containing cytosine deaminase convert one molecule of cytosine into one molecule of ammonia. The Proteus mirabilis bacterial electrode showed linear response to cytosine concentration in the $1.0{\times}10^{-3}\;-\;5.0{\times}10^{-2}$M with a slope of 45-48 mV/decade in 0.2 M phospbate buffer solution at pH 8.4. The Citrobacter freundii bacterial electrode showed linear response to cytosine concentration in the $7.0{\times}10^{-5}\;-\;7.0{\times}10^{-3}$M with a slope of 48 mV/decade in 0.05M phosphate buffer solution at pH 7.6. These electrode were investigated for the effects of pH, temperature, buffer solutions, amounts of bacteria, interferences, inorganic salts and lifetime.

Cytosine에 대한 bio-electrode는 $NH_3$ 기체감응기에 Proteus mirabilis 와 Citrobacter freundii 박테리아를 고정하여 조립하였다. cytosine deaminase를 포함하는 박테리아는 cytosine 1분자를 $NH_3$ 1분자로 전환시킨다. Proteus mirabilis 박테리아 전극의 감응은 0.2M phosphate 완충용액, pH 8.4에서 $1.0{\times}10^{-3}\;-\;7.0{\times}10^{-3}$M직선범위와 45-48 mV/decade의 감응기울기를 가진다. Citrobacter freundii박테리아 전극의 감응은 0.05M phosphate완충용액, pH 7.6에서 $7.0{\times}10^{-5}\;-\;7.0{\times}10^{-3}$M 직선범위와 48 mV/decade의 감응기울기를 가진다. 이 전극을 pH, 온도, 완충용액, 박테리아의 양, 방해물질, 무기염류의 영향과 전극의 수명을 조사하였다.

Keywords

References

  1. Current Chemotherapy and Immunotherapy T. Nishiyama;K. Kawamura;T. Katsuragi;T. Sakai
  2. Neurol. Med. Chir. v.22 T. Nishiyama;K. Kawamura;T. Katsuragi;T. Sakai
  3. Cacer Res. v.45 T. Nishiyama;K. Kawamura;H. Matsumura;T. Katsuragi;T. Sakai
  4. Ann. N.Y. Acad. Sci. v.102 L.C. Clark;C. Lyons
  5. Anal. Chem. v.36 S.A. Katz
  6. Biochim. Biophs. Acta v.107 S.A. Katz;J.A. Cowans
  7. Anal. Chim. Acta v.76 W.R. Hussein;G.G. Guilbault
  8. Anal. Lett. v.5 no.9 G.A. Rechnitz;T.A. Neubecker
  9. Anal. Chim. Acta v.147 D.P. Nikolelis;T.P. Handjiioannou
  10. Anal. Biochem. v.94 M. Aizawa;A. Morioka;S. Suzuki;Y. Nagamura
  11. Anal. Chim. Acta v.94 G.A. Rechnitz;R.K. Riechel;C.R. Gebauer
  12. Anal. Lett. v.10 R.K. Kobos;G.A. Rechnitz
  13. Science v.199 G.A. Rechnitz;T.L. Riechel;R.K. Kobos;M.E. Meyerhoff
  14. J. Membr. Sci. v.4 T.L. Riechel;G.A. Rechnitz
  15. Anal. Chem. v.56 C.R. Bradley;G.A. Rechnitz
  16. Anal. Chem. v.53 M.A. Arnold;G.A. Rechintz
  17. Anal. Chem. v.48 D.S. Papastathopoulos; G.A. Rechnitz
  18. FED. Proc. Red. Amer. Soc. Biol. v.36 G.A. Rechnitz;D.S. Papastathopoulos;M. Saffran
  19. Agr. Biol. Chem. v.40 no.9 T. Sakai;T.S. Yu;S. Omata
  20. Arch. Microbiol. v.147 J.M. Kim;Sakayu Shimizu;H. Yamada
  21. Anal. Chem. v.52 I. Deng;C. Enke