Pressure Dependence on the Aquation of s-cis-[Co(ee)$Cl_2$]+ and s-cis-[Co(eee)$Br_2$]+ ions

s-cis-$[Co(eee)Cl_2$]^+ 및 s-cis-$[Co(eee)Br_2]^+ $착이온의 수화반응에 미치는 압력의 영향

  • Jong-Jae Chung (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Sung-Oh Bek (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 백성오 (경북대학교 자연과학대학 화학과)
  • Published : 1988.08.20

Abstract

We studied the aquation reaction of s-cis-$[Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ complex ions under the various temperatures and pressures. In these complexes eee is $NH_2-CH_2CH_2-S-CH_2CH_2-NH_2$. The rate law of the aquation reactions of these two complexes obeys $Rate = k_{obsd}$[CO(III)], where rate constants of s-cis-$Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ respectively are $0.687{\times}10^{-4}$ $sec^{-1}$ and $4.10{\times}10^{-4}$ $sec^{-1}$ in condition of 0.1M $HClO_4\;and\;40^{\circ}C$. In the same condition, the activation entropies of s-cis-[Co(eee)$Cl_2$]+ and s-cis-(Co(eee)Br_2$]+ complexes respectively are -15.5 eu and -7.54eu, and the activation volumes are $-4.6cm^3mole^{-1}$ and $-4.2cm^3mole^{-1}$. From these data, we could infer the mechanism of the aquation reaction as the interchange dissociation (Id) mechanism.

s-cis-$[Co(eee)Cl_2]^+$ 와 s-cis-$[Co(eee)Br_2]^+$ 착이온의 수화반응을 여러가지 온도와 압력하에서 분광광도법으로 연구하였다. 여기서 eee는 $NH_2-CH_2CH_2-S-CH_2CH_2-NH_2이다. 두가지 착물의 수화반응은 속도법칙 Rate = $k_{obsd}$[Co(III)]를 따르고, 속도상수$(k_{obsd})$)는 0.1M $HClO_4,\;40^{\circ}C$에서 s-cis-$[Co(eee)Cl_2]^+$와 s-cis-$[Co(eee)Br_2]^+$가 각각 $0.687{\times}10^{-4}$ $sec^{-1}$$4.10{\times}10^{-4}$$sec^{-1}$이다. 같은 조건에서$[Co(eee)Cl_2]^+$ 와 s-cis-$[Co(eee)Br_2]^+$착이온의 활성화엔트로피$({\Delta}S^{\neq})$는 각각 -15.5eu와 -7.54eu 이고 활성화부피$({\Delta}V^{\neq})$는 각각 $-4.6cm^3mole^{-1}$$-4.2cm^3mole^{-1}$이다. 이들 데이타로부터 수화반응의 메카니즘은 교환해리(Id)메카니즘으로 추론할 수 있다.

Keywords

References

  1. Inorg. Chem. v.4 A.M. Sargeson;G.H. Searle
  2. J. Am. Chem. Soc. v.87 E. Kynno;L. Boucher;J.C. Bailar, Jr.
  3. Inorg. Chem. v.5 H. Hamilton;M.D. Alexander
  4. Inorg. Chem. v.6 S. Yoshikawa;T. Sekihara;M. Goto
  5. Inorg. Chem. v.3 C.F. Liu
  6. Inorg. Chem. v.4 J.L. Legg;D.W. Cooke
  7. Helv. Chim. Acta. v.49 G. Degischer;G. Schwarzenbach
  8. Inorg. Chem. v.14 J.H. Worrell
  9. Inorg. Chem. v.8 J.H. Worrell;Dollo Busch
  10. J. Am. Chem. Soc. F.P. Dwyer;F. Lions
  11. Inorg. Chem. v.8 B. Bosnich;W.R. Kneen;A.T. Philip
  12. High Temp. High Pres. v.7 H. Lentz;S.O. Oh
  13. Reaction Kinetics in the liquid Phase S.G. Entelis;R.P. Tiger
  14. Can. J. Chem. v.56 S.T.D. Lo;M.J. Sisley;T.W. Swaddle
  15. Trans. Faraday Soc. v.51 C.T. Burris;K.J. Laidler
  16. Inorg. Chem. v.16 D.A. Palmer;H. Kelm
  17. Bull. Chem. Soc. Jpn. v.50 Y. Kitamura
  18. Inorg. Chem. v.7 M.L. Tobe